Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 43-56    DOI: 10.11900/0412.1961.2022.00007
Research paper Current Issue | Archive | Adv Search |
Effect of Copper Content on the MIC Resistance in Pipeline Steel
ZENG Yunpeng1,2, YAN Wei2,3(), SHI Xianbo2,3, YAN Maocheng2, SHAN Yiyin2,3, YANG Ke2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel. Acta Metall Sin, 2024, 60(1): 43-56.

Download:  HTML  PDF(4666KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microbiologically induced corrosion (MIC), particularly those caused by sulfate-reducing bacteria (SRB), is considered as a destructive mechanism in buried pipeline steels, which has received considerable attention since its discovery a century ago. Research has shown that sessile cells that are attached to a metal surface embedded in biofilms with extracellular polymeric substances (EPS) are responsible for the occurrence of MIC. However, the commonly used MIC control strategy, i.e., biocides, cannot perform sterilization of sessile cells because of the protection of the biofilm. Cu-bearing pipeline steel is a newly developed steel that can be used for MIC control in buried pipes. The continuous release of cytotoxic Cu ions from the steel matrix leads to MIC resistance. However, the influence of Cu content on MIC resistance remains unclear. A lower Cu content in steel is not beneficial to its MIC resistance, whereas a higher Cu content can increase the cost and may cause “hot shortness” during thermal processing. Therefore, clarifying the influence of Cu content on the properties of Cu-bearing pipeline steel is important for the practical application of the steel. In the present study, the influence of Cu content (0, 0.7%, and 1.34%; mass fraction) on the corrosion behavior of X65 grade Cu-bearing pipeline steel was investigated through electrochemical measurements and surface analysis during 14 d immersion in sterile and SRB-inoculated NS4 solutions, respectively. Experimental results demonstrated that the antibacterial properties and corrosion resistance of the steel improved with the increase of Cu content. When Cu content was increased to 1.34%, the pitting corrosion of the steel in the SRB-inoculated medium was almost suppressed. The protective corrosion products formed in the sterile medium and antibacterial Cu ions continuously released from the steel in the SRB-inoculated medium resulted in the remarkable corrosion resistance of Cu-bearing pipeline steels.

Key words:  microbiologically induced corrosion      sulfate reduced bacteria (SRB)      Cu-bearing pipeline steel      antibacterial property      corrosion resistance     
Received:  06 January 2022     
ZTFLH:  TG174.2  
Fund: National Natural Science Foundation of China(U1906226)
Corresponding Authors:  YAN Wei, professor, Tel: (024)83978990, E-mail: weiyan@ima.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00007     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/43

SteelCSiMnCuNbTiMoFe
1#0.020.010.071.340.040.0170.1Bal.
2#0.020.010.050.700.040.0170.1Bal.
3#0.020.010.050.040.0170.1Bal.
Table 1  Chemical compositions of the steels
Fig.1  Microstructures of Cu-bearing pipeline steels with different Cu contents
(a) 1# (b) 2# (c) 3#
Fig.2  Open circuit potential (EOCP) of Cu-bearing steels with different Cu contents in sterile (a) and SRB inoculated (b) NS4 solutions as a function of time (SRB—sulfate reducing bacteria, NS—no SRB, SCE—saturated calomel electrode)
Fig.3  Time dependence of Rp of Cu-bearing steels with different Cu contents in sterile (a) and SRB-inoculated (b) NS4 solutions (Rp—linear polarization resistance)
Fig.4  Potentiodynamic polarization curves of Cu-bearing steels with different Cu contents immersed in sterile (a) and SRB inoculated (b) NS4 solutions for 14 d (E—potential, icorr—corrosion current density)
Fig.5  Nyquist plots of Cu-bearing steels with different Cu contents during 14 d immersion in sterile (a, c, e) and SRB inoculated (b, d, f) NS4 solutions
(a, b) 1# (c, d) 2# (e, f) 3#
Fig.6  Equivalent circuits model used to fit EIS data (Rs—resistance of solution, Qf—capacitance of oxide film layer, Qdl—capacitance of electrical double-layer, Rf—resistance of oxide film layer, Rct—charge transfer resistance of electrical double-layer)
(a) equivalent circuit for one-time constant (b) equivalent circuit for two-time constant
SteelTime / dRs / (Ω·cm2)QdlRct / (Ω·cm2)χ2
Ydl / (S·s n ·cm-2)ndl
NS-1#1193.61.387 × 10-40.83651.733 × 1046.07 × 10-4
2188.87.166 × 10-50.89531.881 × 1058.79 × 10-4
4175.85.981 × 10-50.90824.377 × 1057.93 × 10-4
7169.25.488 × 10-50.91105.946 × 1058.95 × 10-4
14141.95.519 × 10-50.91046.011 × 1059.05 × 10-4
NS-2#1198.81.427 × 10-40.83856.071 × 1048.29 × 10-4
2196.15.011 × 10-50.89159.385 × 1041.05 × 10-3
4183.63.830 × 10-50.93853.809 × 1059.87 × 10-3
7171.43.783 × 10-40.94255.215 × 1051.01 × 10-3
14148.44.342 × 10-30.94784.932 × 1059.08 × 10-4
NS-3#1193.48.350 × 10-50.84611.814 × 1046.85 × 10-4
2190.14.959 × 10-50.91821.428 × 1051.15 × 10-3
4179.44.756 × 10-50.93691.956 × 1059.09 × 10-4
7166.55.263 × 10-50.94132.121 × 1055.82 × 10-4
14143.97.236 × 10-50.94431.481 × 1056.28 × 10-4
Table 2  Fitting results of EIS in sterile NS4 solution
Fig.7  Time dependence of Rct and (Rct+Rf) values of Cu-bearing steels with different Cu contents immersed in sterile (a) and SRB inoculated (b) NS4 solutions for 14 d
Fig.8  CLSM images of Cu-bearing steels with different Cu contents immersed in SRB inoculated solution for 14 d
(a) 1# (b) 2# (c) 3#
Steel

Time

d

Rs

Ω·cm2

Qf

Rf

Ω·cm2

Qdl

Rct

Ω·cm2

χ2
Yf / S·s n ·cm-2nfYdl / (S·s n ·cm-2)ndl
SRB-1#1216.45.25 × 10-30.91026.627 × 1044.71 × 10-4
2201.88.80 × 10-40.91005.509 × 1048.09 × 10-4
4180.27.73 × 10-30.471347.93.05 × 10-30.95863.897 × 1043.79 × 10-4
7172.51.07 × 10-20.428046.54.51 × 10-30.95821.451 × 1052.43 × 10-5
14153.07.92 × 10-50.468325.52.38 × 10-30.95994.578 × 1059.57 × 10-4
SRB-2#1223.65.50 × 10-40.91345.686 × 1045.74 × 10-4
2205.96.30 × 10-40.91075.136 × 1041.34 × 10-3
4184.05.25 × 10-30.517162.06.83 × 10-50.86133.695 × 1047.08 × 10-4
7166.19.96 × 10-30.487164.34.91 × 10-30.96797.404 × 1041.95 × 10-5
14150.59.37 × 10-20.432668.42.88 × 10-30.93833.659 × 1056.33 × 10-4
SRB-3#1336.71.202 × 10-40.80965.097 × 1045.74 × 10-4
2311.77.821 × 10-50.87634.003 × 1041.34 × 10-3
4184.35.62 × 10-30.538546.83.358 × 10-30.96543.486 × 1043.32 × 10-5
7169.98.93 × 10-30.441157.35.402 × 10-30.96584.555 × 1041.35 × 10-5
14154.87.00 × 10-50.441763.04.840 × 10-30.95991.068 × 1051.07 × 10-3
Table 3  Fitting results of EIS in SRB inoculated NS4 solution
Fig.9  SEM images of Cu-bearing steels with different Cu contents immersed in sterile (a-c) and SRB inoculated (d-f) NS4 solutions for 14 d (Insets are the high magnification morphologies of the corrosion products on the steel surfaces. Red squares in the insets denote the element analysis locations) (a, d) 1# (b, e) 2# (c, f) 3#
Fig.10  XPS survey spectra of Cu-bearing steels with different Cu contents in sterile (a) and SRB inoculated (b) NS4 solutions for 14 d, and EDS analyses of 1# (c) and 2# (d) steels (boxes I and II in Fig.9) in SRB inoculated solution after 14 d immersion
Fig.11  High resolution XPS spectra of Cu in the surficial corrosion products on Cu-bearing steels with different Cu contents after immersion in sterile (a, b) and SRB inoculated (c, d) NS4 solutions for 14 d
(a, c) 1# (b, d) 2#
Fig.12  Surface morphologies with removal of corrosion products on Cu-bearing steels with different Cu contents after immersion in sterile (a-c) and SRB inoculated (d-f) NS4 solutions for 14 d (a, d) 1# (b, e) 2# (c, f) 3#
Fig.13  Pits statistics on Cu-bearing steels with different Cu contents after immersion in SRB inoculated NS4 solution for 14 d
(a) pit density (b) pit depth
(c-e) pit diameters and the largest pits on 1# (c), 2# (d), and 3# (e) steels, respectively
1 Li S Y, Kim Y G, Jeon K S, et al. Microbiologically influenced corrosion of underground pipelines under the disbonded coatings [J]. Met. Mater., 2000, 6: 281
doi: 10.1007/BF03028224
2 Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: Corrosion scales characterization and microbial community structure investigation [J]. Corros. Sci., 2008, 50: 2816
doi: 10.1016/j.corsci.2008.07.008
3 Sowards J W, Mansfield E. Corrosion of copper and steel alloys in a simulated underground storage-tank sump environment containing acid-producing bacteria [J]. Corros. Sci., 2014, 87: 460
doi: 10.1016/j.corsci.2014.07.009
4 Heyer A, D'Souza F, Morales C F L, et al. Ship ballast tanks a review from microbial corrosion and electrochemical point of view [J]. Ocean Eng., 2013, 70: 188
doi: 10.1016/j.oceaneng.2013.05.005
5 Hashemi S J, Bak N, Khan F, et al. Bibliometric analysis of microbiologically influenced corrosion (MIC) of oil and gas engineering systems [J]. Corrosion, 2017, 74: 468
doi: 10.5006/2620
6 Conley S, Franco G, Faloona I, et al. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA [J]. Science, 2016, 351: 1317
doi: 10.1126/science.aaf2348 pmid: 26917596
7 Jacobson G A. Corrosion at Prudhoe Bay—A lesson on the line [J]. Mater. Perform., 2007, 46: 26
8 Usher K M, Kaksonen A H, Cole I, et al. Critical review: Microbially influenced corrosion of buried carbon steel pipes [J]. Int. Biodeterior. Biodegrad., 2014, 93: 84
doi: 10.1016/j.ibiod.2014.05.007
9 Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
doi: 10.1016/j.corsci.2017.10.023
10 Lv M Y, Du M. A review: microbiologically influenced corrosion and the effect of cathodic polarization on typical bacteria [J]. Rev. Environ. Sci. BioTechnol., 2018, 17: 431
doi: 10.1007/s11157-018-9473-2
11 Flemming H C, Wingender J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
12 Jia R, Unsal T, Xu D K, et al. Microbiologically influenced corrosion and current mitigation strategies: A state of the art review [J]. Int. Biodeterior. Biodegrad., 2019, 137: 42
doi: 10.1016/j.ibiod.2018.11.007
13 Costerton J W, Ellis B, Lam K, et al. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria [J]. Antimicrob. Agents Chemother., 1994, 38: 2803
doi: 10.1128/AAC.38.12.2803 pmid: 7695266
14 Yu H B, Li Z M, Xia Y Y, et al. Effect of copper addition in carbon steel on biocorrosion by sulfate-reducing bacteria in solution [J]. Anti-Corros. Methods Mater., 2021, 68: 302
15 Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153
16 Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
17 Shibata K, Seo S J, Kaga M, et al. Suppression of surface hot shortness due to Cu in recycled steels [J]. Mater. Trans., 2002, 43: 292
doi: 10.2320/matertrans.43.292
18 Melford D A. Surface hot shortness in mild steel [J]. J. Iron Steel Inst., 1962, 200: 290
19 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (I) Electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
doi: 10.11902/1005.4537.2014.044
20 Gabrielli C, Keddam M, Takenouti H, et al. The relationship between the impedance of corroding electrode and its polarization resistance determined by a linear voltage sweep technique [J]. Electrochim. Acta, 1979, 24: 61
doi: 10.1016/0013-4686(79)80042-0
21 Yu L B, Yan M C, Ma J, et al. Sulfate reducing bacteria corrosion of pipeline steel in Fe-rich red soil [J]. Acta Metall. Sin., 2017, 53: 1568
于利宝, 闫茂成, 马 健 等. 富Fe红壤中管线钢的硫酸盐还原菌腐蚀行为 [J]. 金属学报, 2017, 53: 1568
22 Xu J, Sun C, Yan M C, et al. Variations of microenvironments with and without SRB for steel Q 235 under a simulated disbonded coating [J]. Ind. Eng. Chem. Res., 2013, 52: 12838
doi: 10.1021/ie303335n
23 Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
doi: 10.1016/j.corsci.2013.04.058
24 Hong J H, Lee S H, Kim J G, et al. Corrosion behaviour of copper containing low alloy steels in sulphuric acid [J]. Corros. Sci., 2012, 54: 174
doi: 10.1016/j.corsci.2011.09.012
25 Hermas A A, Ogura K, Adachi T. Accumulation of copper layer on a surface in the anodic polarization of stainless steel containing Cu at different temperatures [J]. Electrochim. Acta, 1995, 40: 837
doi: 10.1016/0013-4686(94)00365-8
26 Kim J K. An electrochemical study on the effect of pitting inhibition in weakly alkaline solution by copper addition in pure iron [J]. Met. Mater. Int., 2003, 9: 47
doi: 10.1007/BF03027229
27 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (II) Corrosion morphology and corrosion product analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 353
吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (II) 腐蚀形貌和产物分析 [J]. 中国腐蚀与防护学报, 2014, 34: 353
doi: 10.11902/1005.4537.2014.045
28 Dong Z H, Shi W, Ruan H M, et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique [J]. Corros. Sci., 2011, 53: 2978
doi: 10.1016/j.corsci.2011.05.041
29 Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem [J]. Appl. Environ. Microbiol., 2014, 80: 1226
doi: 10.1128/AEM.02848-13
30 Baba K, Mizuno D, Yasuda K, et al. Effect of Cu addition in pipeline steels on prevention of hydrogen permeation in mildly sour environments [J]. Corrosion, 2016, 72: 1107
doi: 10.5006/2013
31 Craig B D. Effect of copper on the protectiveness of iron sulfide films [J]. Corrosion, 1984, 40: 471
doi: 10.5006/1.3577918
32 Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
doi: 10.1016/j.corsci.2012.09.006
33 Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
34 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
35 Nan L, Yang W C, Liu Y Q, et al. Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. coli [J]. J. Mater. Sci. Technol., 2008, 24: 197
36 Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250
doi: 10.1016/j.biomaterials.2016.08.031
37 Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface [J]. Appl. Environ. Microbiol., 2011, 77: 1541
doi: 10.1128/AEM.02766-10
38 Zhang S, Yang C, Ren G, et al. Study on behaviour and mechanism of Cu2+ ion release from Cu bearing antibacterial stainless steel [J]. Mater. Technol., 2015, 30: B126
doi: 10.1179/1753555714Y.0000000236
39 Sharifahmadian O, Salimijazi H R, Fathi M H, et al. Relationship between surface properties and antibacterial behavior of wire arc spray copper coatings [J]. Surf. Coat. Technol., 2013, 233: 74
doi: 10.1016/j.surfcoat.2013.01.060
40 Xia J, Yang C G, Xu D K, et al. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm [J]. Biofouling, 2015, 31: 481
doi: 10.1080/08927014.2015.1062089
41 Sun D, Xu D K, Yang C G, et al. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance [J]. Mater. Sci. Eng., 2016, C69: 744
42 Warnes S L, Keevil C W. Mechanism of copper surface toxicity in vancomycin-resistant enterococci following wet or dry surface contact [J]. Appl. Environ. Microbiol., 2011, 77: 6049
doi: 10.1128/AEM.00597-11
43 Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
doi: 10.1016/j.corsci.2017.12.006
44 Yin L, Xu D K, Yang C G, et al. Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria [J]. Corros. Sci., 2021, 179: 109141
doi: 10.1016/j.corsci.2020.109141
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[4] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[5] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[6] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[7] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[8] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[9] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[10] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[11] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[12] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[13] Yun SHU, Maocheng YAN, Yinghua WEI, Fuchun LIU, En-Hou HAN, Wei KE. Characteristics of SRB Biofilm and Microbial Corrosionof X80 Pipeline Steel[J]. 金属学报, 2018, 54(10): 1408-1416.
[14] Libao YU, Maocheng YAN, Jian MA, Minghao WU, Yun SHU, Cheng SUN, Jin XU, Changkun YU, Yongchang QING. Sulfate Reducing Bacteria Corrosion of Pipeline Steel inFe-Rich Red Soil[J]. 金属学报, 2017, 53(12): 1568-1578.
[15] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
No Suggested Reading articles found!