Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 103-113    DOI: 10.11900/0412.1961.2021.00094
Research paper Current Issue | Archive | Adv Search |
Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy
XIANG Zhaolong1,2,3, ZHANG Lin1, XIN Yan3, AN Bailing1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3(), WANG Engang1()
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA
Cite this article: 

XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy. Acta Metall Sin, 2022, 58(1): 103-113.

Download:  HTML  PDF(3375KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

FeCrCo permanent magnet alloys draw wide attention because of their excellent machinability. These alloys can be deformed and extruded into thin wires or sheets for various applications, such as electric motors, telephone receivers, printers, and stereo cartridges. In these alloys, the content and distribution of Cr play an important role in improving their magnetic and hardness properties. To optimize both properties of these alloys, the effect of Cr must be studied. This study describes the effect of Cr content on microstructure, i.e., volume fraction, size, and composition of α 1 and α 2 phases in (84 - X)FeXCr15Co1Si (X = 20, 25, 30, 35, mass fraction, %) samples using atomic-resolution STEM. The effect of microstructure parameters on both Vickers hardness and magnetic properties was evaluated. STEM images showed that the average size of the α 1 phase increased from 26 nm to 55 nm with an increase in Cr content from 20% to 35%. When the content of Cr increased from 20% to 25%, the volume fraction of the α 1 phase increased by 12%, and when the content of Cr increased beyond 25%, the volume fraction remained the same. EDS results showed that with the increase of Cr content, in the (Fe-Co)-rich α 1 phase, the content of Fe decreased, whereas the contents of Cr and Co increased. By contrast, in the Cr-rich α 2 phase, the contents of Fe and Co decreased but the content of Cr increased. After step aging, hardness increased because of spinodal decomposition and continued to increase with an increase in Cr content. Remanence, coercivity, and magnetic energy product reached their maximum values when the content of Cr was at 25% and decreased as the content of Cr increased. The dependence of magnetic properties on the size, volume fraction, composition of α 1 phase, and difference in composition between α 1 and α 2 phases was discussed. The mechanism for hardening was also discussed, which increased with the Cr content.

Key words:  FeCrCoSi alloy      spinodal decomposition      STEM-HAADF      magnetic property      hardness     
Received:  01 March 2021     
ZTFLH:  TG132.27  
Fund: National Natural Science Foundation of China(51674083);Programme of Introducing Talents of Discipline Innovation to Universities 2.0(BP0719037);National Science Foundation of America(DMR-1157490)
About author:  WANG Engang, professor, Tel: (024)83681739, E-mail: egwang@mail.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00094     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/103

Fig.1  Schematic of solution treatment, annealing, and step aging of FeCrCoSi samples
Heat treatment 64Fe20Cr15Co1Si 59Fe25Cr15Co1Si 54Fe30Cr15Co1Si 49Fe35Cr15Co1Si
Solution treatment 20Cr-ST 25Cr-ST 30Cr-ST 35Cr-ST
Step aging 20Cr-SA 25Cr-SA 30Cr-SA 35Cr-SA
Table 1  Description of FeCrCoSi samples with different contents of Cr after different heat treatments
Fig.2  XRD spectra of solution-treated (a) and step-aged (b) FeCrCoSi samples with different contents of Cr
Fig.3  HAADF images (a1-d1) and size distributions of α 1 phase (a2-d2) of spinodal decomposition after step aging in samples 20Cr-SA (a1, a2), 25Cr-SA (b1, b2), 30Cr-SA (c1, c2), and 35Cr-SA (d1, d2)

Sample

D α 1

nm

Magnetic property Mass fraction / % V α 1

Br

T

H

kA·m-1

BH max

kJ·m-3

C α 1 C α 2 ΔC t %
20Cr-SA 26 ± 4.1 0.61 10.2 1.67 69.3Fe12.9Cr16.9Co0.9Si 49.6Fe36.5Cr12.0Co1.9Si 49.2 54
25Cr-SA 30 ± 6.0 0.84 41.7 13.69 67.2Fe11.8Cr20.3Co0.7Si 38.5Fe51.9Cr8.1Co1.5Si 81.8 60
30Cr-SA 33 ± 5.7 0.64 35.3 6.92 60.1Fe16.4Cr22.9Co0.6Si 33.6Fe56.2Cr8.1Co2.1Si 82.6 62
35Cr-SA 55 ± 8.9 0.30 14.5 1.11 57.4Fe19.1Cr23.2Co0.3Si 31.3Fe60.7Cr6.8Co1.2Si 85.0 61
Table 2  Parameters of magnetic properties, sizes and volume fractions of α 1 phase, compositions of α 1 and α 2 phases, and total values of absolute composition difference of Fe, Cr, Co, and Si between α 1 and α 2 phases of step-aged FeCrCoSi samples with different contents of Cr
Fig.4  HAADF images of spinodal decomposition of sample 35Cr-SA, as viewed along [001] direction (The upper insets show fast Fourier transform (FFT) of Figs.4a, b, and c, respectively. The lower insets show the intensity profile of values taken along the lines AB, CD, and EF, respectively)
(a) α 1 and α 2 phases (b) α 1 phase (c) α 2 phase
Fig.5  Hysteresis loops of step-aged samples with different contents of Cr (J—magnetic polarization)
Fig.6  Vickers hardnesses of samples with different contents of Cr under different heat treatments
Fig.7  Superimposed EDS maps of Fe, Cr, Co, and Si after step aging in samples 20Cr-SA (a), 25Cr-SA (b), 30Cr-SA (c), and 35Cr-SA (d)
Sample E / GPa Y / GPa ΔC Cr / % ΔC Co / % ΔC Si / %
20Cr-SA 223 333 24 2 1
25Cr-SA 226 338 40 12 0.8
30Cr-SA 229 342 40 15 1.5
35Cr-SA 233 348 42 16 0.9
Table 3  Parameters of E, Y, ΔC Cr, ΔC Co, and ΔC Si ofsamples 20Cr-SA-35Cr-SA
Fig.8  Average amplitudes (a) and wavelengths (b) of spinodal decompositions in step-aged samples with different contents of Cr
1 Kaneko H , Homma M , Nakamura K . New ductile permanent magnet of Fe-Cr-Co system [J]. AIP Conf. Proc., 1971, 5: 1088
2 Rastabi R A , Ghasemi A , Tavoosi M , et al . Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering [J]. J. Magn. Magn. Mater., 2017, 426: 744
3 Ushakova O A , Dinislamova E H , Gorshenkov M V , et al . Structure and magnetic properties of Fe-Cr-Co nanocrystalline alloys for permanent magnets [J]. J. Alloys Compd., 2014, 586(suppl.1): S291
4 Kaneko H , Homma M , Minowa T . Effect of V and V + Ti additions on the structure and properties of Fe-Cr-Co ductile magnet alloys [J]. IEEE Trans. Magn., 1976, 12: 977
5 Zijlstra H . Trends in permanent magnet material development [J]. IEEE Trans. Magn., 1978, 14: 661
6 Altafi M , Mohammad Sharifi E , Ghasemi A . The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy [J]. J. Magn. Magn. Mater., 2020, 507: 166837
7 Homma M , Horikoshi E , Minowa T , et al . High-energy Fe-Cr-Co permanent magnets with (BH)max ≃8-10 MG Oe [J]. Appl. Phys. Lett., 1980, 37: 92
8 Minowa T , Okada M , Homma M . Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1980, 16: 529
9 Kaneko H , Homma M , Nakamura K , et al . Phase diagram of Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1977, 13: 1325
10 Kaneko H , Homma M , Nakamura K , et al . Fe-Cr-Co permanent magnet alloys containing silicon [J]. IEEE Trans. Magn., 1972, 8: 347
11 Samarin B A , Kolchin A E , Kal'Ner Y V . Effect of prior aging and flat rooling on the structure and magnetic properties of alloys of the Fe-Cr-Co-Cu system [J]. Met. Sci. Heat Treat., 1986, 28: 690
12 Stel'Mashok S I , Milyaev I M , Yusupov V S , et al . Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V [J]. Met. Sci. Heat Treat., 2017, 58: 622
13 Tao S , Ahmad Z , Khan I U , et al . Phase, microstructure and magnetic properties of 45.5Fe-28Cr-20Co-3Mo-1.5Ti-2Nb permanent magnet [J]. J. Magn. Magn. Mater., 2019, 469: 342
14 Han X H , Bu S J , Wu X , et al . Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets [J]. J. Alloys Compd., 2017, 694: 103
15 Jin S . Deformation-induced anisotropic Cr-Co-Fe permanent magnet alloys [J]. IEEE Trans. Magn., 1979, 15: 1748
16 Sugimoto S , Okada M , Homma M . The enhancement of the magnetic properties of Fe-Cr-Co-Mo polycrystalline permanent magnet alloys by cold rolling and annealing [J]. J. Appl. Phys., 1988, 63: 3707
17 Sun X Y , Xu C Y , Zhen L , et al . Evolution of modulated structure in Fe-Cr-Co alloy during isothermal ageing with different external magnetic field conditions [J]. J. Magn. Magn. Mater., 2007, 312: 342
18 Jin S , Gayle N . Low-cobalt Cr-Co-Fe magnet alloys obtained by slow cooling under magnetic field [J]. IEEE Trans. Magn., 1980, 16: 526
19 Zhang X J , Xu R G , Wu W H , et al . The influences of magnetic heat-treatment on the microstructure and magnetic properties [J]. Electr. Eng. Mater., 2002, (2): 31
张小菊, 徐仁根, 吴危航 等 . 磁场热处理对Fe-Cr-Co合金组织与性能的影响 [J]. 电工材料, 2002, (2): 31
20 Zhang L , Xiang Z L , Li X D , et al . Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials (Basel), 2018, 8: 578
21 Jin S , Mahajan S , Brasen D . Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys [J]. Metall. Mater. Trans., 1980, 11A: 69
22 Suzudo T , Takamizawa H , Nishiyama Y , et al . Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys [J]. J. Nucl. Mater., 2020, 540: 152306
23 Takahashi A , Suzuki T , Nomoto A , et al . Influence of spinodal decomposition structures on the strength of Fe-Cr alloys: A dislocation dynamics study [J]. Acta Mater., 2018, 146: 160
24 Tang Y P , Goto W , Hirosawa S , et al . Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
25 Yan J Z , Li N , Fu X , et al . The strengthening effect of spinodal decomposition and twinning structure in MnCu-based alloy [J]. Mater. Sci. Eng., 2014, A618: 205
26 Kaneko H , Homma M , Fukunaga T , et al . Fe-Cr-Co permanent magnet alloys containing Nb and Al [J]. IEEE Trans. Magn., 1975, 11: 1440
27 Han K , Xin Y , Walsh R , et al . The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels [J]. Mater. Sci. Eng., 2009, A516: 169
28 Downey S , Han K , Kalu P N , et al . A study of submicron grain boundary precipitates in ultralow carbon 316LN steels [J]. Metall. Mater. Trans., 2010, 41A: 881
29 Sims J R , Schillig J B , Boebinger G S , et al . The U.S. NHMFL 60 T long pulse magnet [J]. IEEE Trans. Appl. Superconduct., 2002, 12: 480
30 Yang L , Sun X Y , Zhen L , et al . Hyperfine structure variations in an Fe-Cr-Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2014, 338B: 52
31 Belozerov E V , Mushnikov N V , Ivanova G V , et al . High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt [J]. Phys. Met. Metallogr., 2012, 113: 319
32 Yang X , Jiang Z , Li J B , et al . Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties [J]. Nano Energy, 2020, 78: 105372
33 Pathak A K , Khan M , Gschneidner K A Jr , et al . Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1 - x Ce x )2-Fe14 - y Co y B ribbons [J]. Acta Mater., 2016, 103: 211
34 Pathak A K , Khan M , Gschneidner K A , et al . Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets [J]. Adv. Mater., 2015, 27: 2663
35 Drápal S . The origin of anisotropy in Fe-Cr-Co alloys [J]. Czech. J. Phys., 1987, 37B: 1174
36 López-Ortega A , Estrader M , Salazar-Alvarez G , et al . Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles [J]. Phys. Rep., 2015, 553: 1
37 Cui B Z , Han K , Garmestani H , et al . Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing [J]. Acta Mater., 2005, 53: 4155
38 Tan X H , Li H Y , Xu H , et al . A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys [J]. Materials (Basel), 2017, 10: 869
39 Ren K Z , Tan X H , Li H Y , et al . The effects of the addition of Dy, Nb, and Ga on microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposite permanent magnetic alloys [J]. Microsc. Microanal., 2017, 23: 425
40 Kato M . Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[3] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[4] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[8] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[11] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[12] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[13] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[14] Baojun ZHAO,Yuhong ZHAO,Yuanyang SUN,Wenkui YANG,Hua HOU. Effect of Mn Composition on the Nanometer Cu-Rich Phase of Fe-Cu-Mn Alloy by Phase Field Method[J]. 金属学报, 2019, 55(5): 593-600.
[15] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
No Suggested Reading articles found!