Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy
XIANG Zhaolong1,2,3, ZHANG Lin1, XIN Yan3, AN Bailing1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3(), WANG Engang1()
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA
Cite this article:
XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy. Acta Metall Sin, 2022, 58(1): 103-113.
FeCrCo permanent magnet alloys draw wide attention because of their excellent machinability. These alloys can be deformed and extruded into thin wires or sheets for various applications, such as electric motors, telephone receivers, printers, and stereo cartridges. In these alloys, the content and distribution of Cr play an important role in improving their magnetic and hardness properties. To optimize both properties of these alloys, the effect of Cr must be studied. This study describes the effect of Cr content on microstructure, i.e., volume fraction, size, and composition of α1 and α2 phases in (84 - X)FeXCr15Co1Si (X = 20, 25, 30, 35, mass fraction, %) samples using atomic-resolution STEM. The effect of microstructure parameters on both Vickers hardness and magnetic properties was evaluated. STEM images showed that the average size of the α1 phase increased from 26 nm to 55 nm with an increase in Cr content from 20% to 35%. When the content of Cr increased from 20% to 25%, the volume fraction of the α1 phase increased by 12%, and when the content of Cr increased beyond 25%, the volume fraction remained the same. EDS results showed that with the increase of Cr content, in the (Fe-Co)-rich α1 phase, the content of Fe decreased, whereas the contents of Cr and Co increased. By contrast, in the Cr-rich α2 phase, the contents of Fe and Co decreased but the content of Cr increased. After step aging, hardness increased because of spinodal decomposition and continued to increase with an increase in Cr content. Remanence, coercivity, and magnetic energy product reached their maximum values when the content of Cr was at 25% and decreased as the content of Cr increased. The dependence of magnetic properties on the size, volume fraction, composition of α1 phase, and difference in composition between α1 and α2 phases was discussed. The mechanism for hardening was also discussed, which increased with the Cr content.
Fund: National Natural Science Foundation of China(51674083);Programme of Introducing Talents of Discipline Innovation to Universities 2.0(BP0719037);National Science Foundation of America(DMR-1157490)
About author: WANG Engang, professor, Tel: (024)83681739, E-mail: egwang@mail.neu.edu.cn
Fig.1 Schematic of solution treatment, annealing, and step aging of FeCrCoSi samples
Heat treatment
64Fe20Cr15Co1Si
59Fe25Cr15Co1Si
54Fe30Cr15Co1Si
49Fe35Cr15Co1Si
Solution treatment
20Cr-ST
25Cr-ST
30Cr-ST
35Cr-ST
Step aging
20Cr-SA
25Cr-SA
30Cr-SA
35Cr-SA
Table 1 Description of FeCrCoSi samples with different contents of Cr after different heat treatments
Fig.2 XRD spectra of solution-treated (a) and step-aged (b) FeCrCoSi samples with different contents of Cr
Fig.3 HAADF images (a1-d1) and size distributions of α1 phase (a2-d2) of spinodal decomposition after step aging in samples 20Cr-SA (a1, a2), 25Cr-SA (b1, b2), 30Cr-SA (c1, c2), and 35Cr-SA (d1, d2)
Sample
nm
Magnetic property
Mass fraction / %
Br
T
H
kA·m-1
BHmax
kJ·m-3
ΔCt
%
20Cr-SA
26 ± 4.1
0.61
10.2
1.67
69.3Fe12.9Cr16.9Co0.9Si
49.6Fe36.5Cr12.0Co1.9Si
49.2
54
25Cr-SA
30 ± 6.0
0.84
41.7
13.69
67.2Fe11.8Cr20.3Co0.7Si
38.5Fe51.9Cr8.1Co1.5Si
81.8
60
30Cr-SA
33 ± 5.7
0.64
35.3
6.92
60.1Fe16.4Cr22.9Co0.6Si
33.6Fe56.2Cr8.1Co2.1Si
82.6
62
35Cr-SA
55 ± 8.9
0.30
14.5
1.11
57.4Fe19.1Cr23.2Co0.3Si
31.3Fe60.7Cr6.8Co1.2Si
85.0
61
Table 2 Parameters of magnetic properties, sizes and volume fractions of α1 phase, compositions of α1 and α2 phases, and total values of absolute composition difference of Fe, Cr, Co, and Si between α1 and α2 phases of step-aged FeCrCoSi samples with different contents of Cr
Fig.4 HAADF images of spinodal decomposition of sample 35Cr-SA, as viewed along [001] direction (The upper insets show fast Fourier transform (FFT) of Figs.4a, b, and c, respectively. The lower insets show the intensity profile of values taken along the lines AB, CD, and EF, respectively) (a) α1 and α2 phases (b) α1 phase (c) α2 phase
Fig.5 Hysteresis loops of step-aged samples with different contents of Cr (J—magnetic polarization)
Fig.6 Vickers hardnesses of samples with different contents of Cr under different heat treatments
Fig.7 Superimposed EDS maps of Fe, Cr, Co, and Si after step aging in samples 20Cr-SA (a), 25Cr-SA (b), 30Cr-SA (c), and 35Cr-SA (d)
Sample
E / GPa
Y / GPa
ΔCCr / %
ΔCCo / %
ΔCSi / %
20Cr-SA
223
333
24
2
1
25Cr-SA
226
338
40
12
0.8
30Cr-SA
229
342
40
15
1.5
35Cr-SA
233
348
42
16
0.9
Table 3 Parameters of E, Y, ΔCCr, ΔCCo, and ΔCSi ofsamples 20Cr-SA-35Cr-SA
Fig.8 Average amplitudes (a) and wavelengths (b) of spinodal decompositions in step-aged samples with different contents of Cr
1
Kaneko H , Homma M , Nakamura K . New ductile permanent magnet of Fe-Cr-Co system [J]. AIP Conf. Proc., 1971, 5: 1088
2
Rastabi R A , Ghasemi A , Tavoosi M , et al . Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering [J]. J. Magn. Magn. Mater., 2017, 426: 744
3
Ushakova O A , Dinislamova E H , Gorshenkov M V , et al . Structure and magnetic properties of Fe-Cr-Co nanocrystalline alloys for permanent magnets [J]. J. Alloys Compd., 2014, 586(suppl.1): S291
4
Kaneko H , Homma M , Minowa T . Effect of V and V + Ti additions on the structure and properties of Fe-Cr-Co ductile magnet alloys [J]. IEEE Trans. Magn., 1976, 12: 977
5
Zijlstra H . Trends in permanent magnet material development [J]. IEEE Trans. Magn., 1978, 14: 661
6
Altafi M , Mohammad Sharifi E , Ghasemi A . The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy [J]. J. Magn. Magn. Mater., 2020, 507: 166837
7
Homma M , Horikoshi E , Minowa T , et al . High-energy Fe-Cr-Co permanent magnets with (BH)max ≃8-10 MG Oe [J]. Appl. Phys. Lett., 1980, 37: 92
8
Minowa T , Okada M , Homma M . Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1980, 16: 529
9
Kaneko H , Homma M , Nakamura K , et al . Phase diagram of Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1977, 13: 1325
10
Kaneko H , Homma M , Nakamura K , et al . Fe-Cr-Co permanent magnet alloys containing silicon [J]. IEEE Trans. Magn., 1972, 8: 347
11
Samarin B A , Kolchin A E , Kal'Ner Y V . Effect of prior aging and flat rooling on the structure and magnetic properties of alloys of the Fe-Cr-Co-Cu system [J]. Met. Sci. Heat Treat., 1986, 28: 690
12
Stel'Mashok S I , Milyaev I M , Yusupov V S , et al . Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V [J]. Met. Sci. Heat Treat., 2017, 58: 622
13
Tao S , Ahmad Z , Khan I U , et al . Phase, microstructure and magnetic properties of 45.5Fe-28Cr-20Co-3Mo-1.5Ti-2Nb permanent magnet [J]. J. Magn. Magn. Mater., 2019, 469: 342
14
Han X H , Bu S J , Wu X , et al . Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets [J]. J. Alloys Compd., 2017, 694: 103
15
Jin S . Deformation-induced anisotropic Cr-Co-Fe permanent magnet alloys [J]. IEEE Trans. Magn., 1979, 15: 1748
16
Sugimoto S , Okada M , Homma M . The enhancement of the magnetic properties of Fe-Cr-Co-Mo polycrystalline permanent magnet alloys by cold rolling and annealing [J]. J. Appl. Phys., 1988, 63: 3707
17
Sun X Y , Xu C Y , Zhen L , et al . Evolution of modulated structure in Fe-Cr-Co alloy during isothermal ageing with different external magnetic field conditions [J]. J. Magn. Magn. Mater., 2007, 312: 342
18
Jin S , Gayle N . Low-cobalt Cr-Co-Fe magnet alloys obtained by slow cooling under magnetic field [J]. IEEE Trans. Magn., 1980, 16: 526
19
Zhang X J , Xu R G , Wu W H , et al . The influences of magnetic heat-treatment on the microstructure and magnetic properties [J]. Electr. Eng. Mater., 2002, (2): 31
Zhang L , Xiang Z L , Li X D , et al . Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials (Basel), 2018, 8: 578
21
Jin S , Mahajan S , Brasen D . Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys [J]. Metall. Mater. Trans., 1980, 11A: 69
22
Suzudo T , Takamizawa H , Nishiyama Y , et al . Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys [J]. J. Nucl. Mater., 2020, 540: 152306
23
Takahashi A , Suzuki T , Nomoto A , et al . Influence of spinodal decomposition structures on the strength of Fe-Cr alloys: A dislocation dynamics study [J]. Acta Mater., 2018, 146: 160
24
Tang Y P , Goto W , Hirosawa S , et al . Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
25
Yan J Z , Li N , Fu X , et al . The strengthening effect of spinodal decomposition and twinning structure in MnCu-based alloy [J]. Mater. Sci. Eng., 2014, A618: 205
26
Kaneko H , Homma M , Fukunaga T , et al . Fe-Cr-Co permanent magnet alloys containing Nb and Al [J]. IEEE Trans. Magn., 1975, 11: 1440
27
Han K , Xin Y , Walsh R , et al . The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels [J]. Mater. Sci. Eng., 2009, A516: 169
28
Downey S , Han K , Kalu P N , et al . A study of submicron grain boundary precipitates in ultralow carbon 316LN steels [J]. Metall. Mater. Trans., 2010, 41A: 881
29
Sims J R , Schillig J B , Boebinger G S , et al . The U.S. NHMFL 60 T long pulse magnet [J]. IEEE Trans. Appl. Superconduct., 2002, 12: 480
30
Yang L , Sun X Y , Zhen L , et al . Hyperfine structure variations in an Fe-Cr-Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2014, 338B: 52
31
Belozerov E V , Mushnikov N V , Ivanova G V , et al . High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt [J]. Phys. Met. Metallogr., 2012, 113: 319
32
Yang X , Jiang Z , Li J B , et al . Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties [J]. Nano Energy, 2020, 78: 105372
33
Pathak A K , Khan M , Gschneidner K A Jr , et al . Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1 - xCex)2-Fe14 - yCoyB ribbons [J]. Acta Mater., 2016, 103: 211
34
Pathak A K , Khan M , Gschneidner K A , et al . Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets [J]. Adv. Mater., 2015, 27: 2663
35
Drápal S . The origin of anisotropy in Fe-Cr-Co alloys [J]. Czech. J. Phys., 1987, 37B: 1174
36
López-Ortega A , Estrader M , Salazar-Alvarez G , et al . Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles [J]. Phys. Rep., 2015, 553: 1
37
Cui B Z , Han K , Garmestani H , et al . Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing [J]. Acta Mater., 2005, 53: 4155
38
Tan X H , Li H Y , Xu H , et al . A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys [J]. Materials (Basel), 2017, 10: 869
39
Ren K Z , Tan X H , Li H Y , et al . The effects of the addition of Dy, Nb, and Ga on microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposite permanent magnetic alloys [J]. Microsc. Microanal., 2017, 23: 425
40
Kato M . Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79