Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (12): 1579-1587    DOI: 10.11900/0412.1961.2020.00346
Research paper Current Issue | Archive | Adv Search |
Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy
LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun()
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy. Acta Metall Sin, 2021, 57(12): 1579-1587.

Download:  HTML  PDF(3066KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a potential high-temperature structural material, the practical application of NiAl intermetallic compound is limited because of its low plasticity and fracture toughness at room temperature and poor strength at high temperature. Adding alloying elements and optimizing the preparation process are effective ways to improve the material's performance. In this study, NiAl-based alloys were prepared through spark plasma sintering using NiAl-28Cr-5.5Mo-0.5Zr (atom fraction, %) prealloyed powders. The influence of sintering temperature and holding time on the density, microstructure, and room-temperature compression properties of the sintered alloys was studied. The microstructures of the sintered alloys were investigated using SEM, and their room-temperature compression properties were tested using an electronic universal testing machine. It is shown that the influence of spark plasma sintering temperature on the density and room-temperature compression properties of sintered alloys is significant while that of the holding time is weaker. Under optimal sintering parameters, i.e., a sintering temperature of 1200oC, holding time of 3 min, and sintering pressure of 50 MPa, the yield strength, compressive strength, and plasticity strain of the sintered alloy were 1321.4 MPa, 2360 MPa, and 0.313, respectively. Additionally, the densification process of NiAl-28Cr-5.5Mo-0.5Zr alloy prepared by spark plasma sintering was studied.

Key words:  NiAl-based alloy      spark plasma sintering      microstructure      mechanical property      densification     
Received:  04 September 2020     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(91860122)
About author:  WANG Dongjun, associate professor, Tel: (0451)86413917, E-mail: dongjunwang@hit.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00346     OR     https://www.ams.org.cn/EN/Y2021/V57/I12/1579

Fig.1  Process curve of NiAl-based alloy prepared by spark plasma sintering (SPS) (Ts—sintering temperature, t—holding time)
Fig.2  XRD spectra of sintered NiAl-based alloys at different sintering temperatures (t = 7 min)
Fig.3  Microstructures of sintered NiAl-based alloy at different sintering temperatures (The dark contrast phase is identified as NiAl and the bright contrast phase is Cr(Mo); A points two-phase structure, B points crystalline colony composed of short rod-shaped Cr(Mo) and NiAl, and black boxes show the two-phase lamellar structure between particles)
Fig.4  Effect of sintering temperature on the mean width of Cr(Mo) phase in the two-phase structure (a) and the density of sintered NiAl-based alloy (b)
Fig.5  XRD spectra of sintered NiAl-based alloy with different holding time at 1200oC
Fig.6  Microstructures of sintered NiAl-based alloy with different holding time at 1200oC
Fig.7  Effect of holding time at 1200oC on the mean width of Cr(Mo) phase in the two-phase structure (a) and the density of sintered NiAl-based alloy (b)
Fig.8  Room-temperature compression properties of NiAl-based alloy with different sintering parameters(a) different sintering temperatures (t = 7 min)(b) different holding time (1200oC)
Fig.9  Schematics of densification process of NiAl-based alloy prepared by SPS (a-d)
1 Gao H Y, He Y H, Shen P Z. Research status of FeAl intermetallics compound [J]. Mater. Rev., 2008, 22(7): 68
高海燕, 贺跃辉, 沈培智. FeAl金属间化合物研究现状 [J]. 材料导报, 2008, 22(7): 68
2 Bochenek K, Basista M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications [J]. Prog. Aerosp. Sci., 2015, 79: 136
3 Sun Y, Liu R Y, Zhang J S, et al. Progress in NiAl-based intermetallic compound research [J]. Mater. Rev., 2003, 17(7): 10
孙 岩, 刘瑞岩, 张俊善等. NiAl基金属间化合物的研究进展 [J]. 材料导报, 2003, 17(7): 10
4 Chen L, Peng P, Zhan J P, et al. First-principles calculation on mechanical properties of B2-NiAl intermetallic compound with Fe addition [J]. Rare Met. Mater. Eng., 2010, 39: 229
陈 律, 彭 平, 湛建平等. Fe对NiAl力学性能影响的第一原理计算 [J]. 稀有金属材料与工程, 2010, 39: 229
5 Guo J T, Ren W L, Zhou J. Progress in research on alloying effects in NiAl intermetallic alloys [J]. Acta Metall. Sin., 2002, 38: 667
郭建亭, 任维丽, 周 健. NiAl合金化研究进展 [J]. 金属学报, 2002, 38: 667
6 Leng W X, Tian W H. Precipitation hardening of NiAl(Fe) intermetallic compounds in Ni-Al-Fe system [J]. Rare Met. Mater. Eng., 2010, 39: 460
冷文秀, 田文怀. Ni-Al-Fe系中NiAl(Fe)金属间化合物的析出强化 [J]. 稀有金属材料与工程, 2010, 39: 460
7 Chen L. First-principles study on mechanical properties of B2-NiAl intermetallic compound with P microalloying [J]. Rare Met. Mater. Eng., 2012, 41(suppl.2): 290
陈 律. 微量P对NiAl力学性能影响的理论研究 [J]. 稀有金属材料与工程, 2012, 41(): 290
8 Hu X L, Luo Y, Zhao R X, et al. Effect of P on mechanical properties of NiAl intermetallics [J]. J. Civil Aviat. Univ. China, 2016, 34(6): 61
胡雪兰, 罗 阳, 赵若汐等. 磷对NiAl弹性模量和韧塑性影响的第一原理研究 [J]. 中国民航大学学报, 2016, 34(6): 61
9 Johnson D R, Chen X F, Oliver B F, et al. Processing and mechanical properties of in-situ composites from the NiAl-Cr and the NiAl-(Cr, Mo) eutectic systems [J]. Intermetallics, 1995, 3: 99
10 Yuan C, Zhou L Z, Li G S, et al. Characteristics of a NiAl eutectic alloy JJ-3 with excellent properties [J]. Acta Metall. Sin., 2013, 49: 1347
袁 超, 周兰章, 李谷松等. 高性能NiAl共晶合金JJ-3 [J]. 金属学报, 2013, 49: 1347
11 Sheng L Y, Zhang W, Lai S, et al. Microstructure and mechanical properties of Laves phase strengthening NiAl base composite fabricated by rapid solidification [J]. Acta Metall. Sin., 2013, 49: 1318
盛立远, 章 炜, 赖 琛等. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能 [J]. 金属学报, 2013, 49: 1318
12 Sun J, Ma S N, Qi Y H. Microstructure and mechanical properties of rapidly solidified NiAl-Cr(Mo)-Zr alloy [J]. J. Liaoning Inst. Univ. Technol. (Nat. Sci. Ed.), 2013, 33: 367
孙 静, 马胜男, 齐义辉. 快速凝固NiAl-Cr(Mo)-Zr合金的显微组织与力学性能 [J]. 辽宁工业大学学报(自然科学版), 2013, 33: 367
13 Xiao S W. High temperature tensile properties and brittle-to-ductile transition of directionally solidified NiAl-15Cr alloy [J]. Mater. Mech. Eng., 2010, 34(5): 60
肖思文. 定向凝固NiAl-15Cr合金的高温拉伸性能和韧脆转变条件 [J]. 机械工程材料, 2010, 34(5): 60
14 Sun Y, Lin P, Yuan S J. A novel method for fabricating NiAl alloy sheet components using laminated Ni/Al foils [J]. Mater. Sci. Eng., 2019, A754: 428
15 Cui C Y, Guo J T. Investigation on microstructure and mechanical property of NiAl-28Cr-5Mo-1Hf alloy [J]. Acta Metall. Sin., 1999, 35: 477
崔传勇, 郭建亭. NiAl-28Cr-5Mo-1Hf多相金属间化合物的显微组织及力学性能研究 [J]. 金属学报, 1999, 35: 477
16 Ning H W, Wang D J, Wang B, et al. Investigations on the NiAl-Cr(Mo) eutectic alloy with optimized microstructure and improved room-temperature compressive properties [J]. Mater. Sci. Eng., 2021, A813: 141138
17 Bai L, Ge C C, Shen W P. Spark plasma sintering technology [J]. Powder Metall. Technol., 2007, 25: 217
白 玲, 葛昌纯, 沈卫平. 放电等离子烧结技术 [J]. 粉末冶金技术, 2007, 25: 217
18 Liang Y C, Guo J T, Sheng L Y, et al. Effects of rare earth element Gd On the microstructure and mechanical properties of NiAl-Cr(Mo)-Hf eutectic alloy [J]. Acta Metall. Sin., 2010, 46: 528
梁永纯, 郭建亭, 盛立远等. 稀土元素Gd对NiAl-Cr(Mo)-Hf共晶合金的组织和压缩性能的影响 [J]. 金属学报, 2010, 46: 528
19 Guo J T. Research progress of intermetallic NiAl alloys [J]. J. Cent. South Univ. (Sci. Technol.), 2007, 38: 1013
郭建亭. 金属间化合物NiAl的研究进展 [J]. 中南大学学报(自然科学版), 2007, 38: 1013
20 Sheng L Y, Zhang W, Guo J T, et al. Microstructure and mechanical properties of Hf and Ho doped NiAl-Cr(Mo) near eutectic alloy prepared by suction casting [J]. Mater. Charact., 2009, 60: 1311
21 Sheng L Y, Zhang W, Guo J T, et al. Microstructure evolution and mechanical properties' improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment [J]. Intermetallics, 2009, 17: 1115
22 Sheng L Y, Guo J T, Ye H Q. Microstructure and mechanical properties of NiAl-Cr(Mo)/Nb eutectic alloy prepared by injection-casting [J]. Mater. Des., 2009, 30: 964
23 Hao F C, Cui Z Q, Wang W X. Effects of spark plasma sintering temperature on microstructure and mechanical properties of ZK61 magnesium alloy [J]. Trans. Mater. Heat Treat., 2017, 38(3): 34
郝峰晨, 崔泽琴, 王文先. 放电等离子烧结温度对ZK61镁合金组织及力学性能的影响 [J]. 材料热处理学报, 2017, 38(3): 34
24 Li X X, Yang C, Lu H Z, et al. Correlation between atomic diffusivity and densification mechanism during spark plasma sintering of titanium alloy powders [J]. J. Alloys Compd., 2019, 787: 112
25 Liu R F, Wang W X, Chen H S, et al. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism [J]. Adv. Powder Technol., 2019, 30: 2649
26 Song X Y, Liu X M, Zhang J X. Mechanism of conductive powder microstructure evolution in the process of SPS [J]. Sci. China, 2005, 48E: 459
宋晓艳, 刘雪梅, 张久兴. SPS过程中导电粉体的显微组织演变规律及机理 [J]. 中国科学, 2005, 35E: 459
27 Yao L, Chi Y S, Zhao Z K. Influence of the sintering pressure on Al90Mn9Ce1 alloy SPS densification [J]. J. Changchun Univ. Technol. (Nat. Sci. Ed.), 2009, 30: 121
姚 露, 迟元顺, 赵占奎. 烧结压力对Al90Mn9Ce1合金SPS致密化的影响 [J]. 长春工业大学学报(自然科学版), 2009, 30: 121
28 Kang S J L. Sintering: Densification, Grain Growth and Microstructure [M]. Oxford: Elsevier Butterworth-Heinemann, 2005: 674
29 Huai K W, Guo J T, Du X H, et al. Microstructure and mechanical properties of NiAl-Cr(Mo)/Hf alloy prepared by injection casting[J]. Mater. Des., 2007, 28: 1940
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!