Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (5): 760-768    DOI: 10.11900/0412.1961.2019.00282
Current Issue | Archive | Adv Search |
Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools
LIU Zhenpeng1,2, YAN Zhiqiao2, CHEN Feng2(), WANG Shuncheng2, LONG Ying3, WU Yixiong4
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Guangdong Institute of Materials and Processing, Guangzhou 510650, China
3.School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
4.Guangzhou Crystal Technology Co. , Ltd, Guangzhou 510520, China
Cite this article: 

LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools. Acta Metall Sin, 2020, 56(5): 760-768.

Download:  HTML  PDF(5476KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Diamond tools are widely used in industry. Co is considered as the best matrix for the diamond tools due to its excellent retention of diamond grits and flexible control of wear resistance. But its application is suppressed because of its high price. The rapidly increasing contribution of matrices to tool production costs continues to encourage researchers to find and implement cheaper alternatives. Cu-based alloys are ideal materials to replace Co used as diamond tool matrices because of their low sintering temperature, good formability and low price. However, Cu-based matrices can not effectively hold the diamonds due to their low mechanical strength and small elastic modulus, so the service life and processing efficiency of Cu-based diamond tools are difficult to be satisfied. In this work, four kinds of Cu-10Sn-xNi pre-alloyed powders with different Ni contents (x=15, 30, 45 and 60, mass fraction, %) were prepared by ball milling. Bulk samples were fabricated from the pre-alloyed powders by hot pressing sintering at 820, 850 and 880 ℃, respectively. The microstructures and mechanical properties of pre-alloyed powders and bulks were characterized and tested. The results show that Cu3.8Ni phase is detected in the pre-alloyed powders prepared by ball milling. For the powder with 60%Ni, Ni3Sn phase and amorphous phase are detected. With increasing the Ni content as well as the sintering temperature, the segregation of Sn element in sintered alloys is effectively suppressed and the microstructure becomes homogeneous significantly, and the density, flexural strength and flexural modulus of the alloys are correspondingly improved. However, increasing the Ni content has little effect on the hardness of the alloys. The Cu-10Sn-60Ni alloy prepared by hot pressing at 880 ℃ has the best comprehensive performance. Its hardness, flexural strength and flexural modulus are 100 HRB, 1308 MPa and 75.6 GPa, respectively.

Key words:  diamond tool      Cu-Sn-Ni alloy      microstructure      flexural strength      flexural modulus     
Received:  26 August 2019     
ZTFLH:  TG74  
Fund: Guangdong Public Welfare Research and Capacity Building Project(2017A070701029);Guangzhou Foreign Science and Technology Cooperation Special Project(201907010022);Guangzhou Science and Technology Project(201906040007)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00282     OR     https://www.ams.org.cn/EN/Y2020/V56/I5/760

xCu alloySnNi
15751015
30601030
45451045
60301060
Table 1  Components of Cu-10Sn-xNi mixed powders
Fig.1  SEM images of Cu-10Sn-xNi pre-alloyed powers
(a) x=15 (b) x=30 (c) x=45 (d) x=60
Fig.2  Elemental distribution maps of Cu-10Sn-xNi pre-alloyed powders
Color online
(a) x=15 (b) x=30 (c) x=45 (d) x=60
Fig.3  XRD spectra of Cu-10Sn-xNi pre-alloyed powders
Fig.4  BSE images of hot pressing sintering Cu-10Sn-xNi alloys with x=15 (a1~a3) , x=30 (b1~b3) , x=45 (c1~c3) and x=60 (d1~d3) at temperatures of 820 ℃ (a1~d1) , 850 ℃ (a2~d2) and 880 ℃ (a3~d3)

Point

Mass fraction / %

Comment

CuNiSn
128.9529.6941.36Sn-rich area
231.6954.4913.82Transition area
31.4098.390.20Ni-rich area
496.761.112.12Cu-rich area
Table 2  EDS results of points in Fig.4a1
Fig.5  The second phases in hot pressing sintering Cu-10Sn-60Ni alloy at 880 ℃
Fig.6  Effects of Ni content and sintering temperature on density (a) and hardness (b) of Cu-10Sn-xNi alloys
Fig.7  Effects of Ni content and sintering temperature on flexural strength (a) and flexural modulus (b) of Cu-10Sn-xNi alloys
Fig.8  Flexural fracture morphologies of hot pressing sintering Cu-10Sn-xNi alloy at 880 ℃
(a) x=15 (b) x=30 (c) x=45 (d) x=60
1 Henriques B, Ferreira P, Buciumeanu M, et al. Copper-nickel-based diamond cutting tools: Stone cutting evaluation [J]. Int. J. Adv. Manuf. Technol., 2017, 92: 1339
2 Song Y Q, Liu Y B, Zhang S H, et al. Manual for Synthetic Diamond Tools [M]. Beijing: Metallurgical Industry Press, 2014: 589
宋月清, 刘一波, 张绍和等. 人造金刚石工具手册 [M]. 北京: 冶金工业出版社, 2014: 589
3 Song Y Q, Yin S, Sun Y C, et al. Investigation on Co-base matrix of diamond tool [J]. Mater. Mech. Eng., 1993, 17(3): 39
宋月清, 殷 声, 孙毓超等. 钴基金刚石工具胎体材料的研究 [J]. 机械工程材料, 1993, 17(3): 39
4 de Oliveira H C P, Cabral S C, Guimarães R S, et al. Processing and characterization of a cobalt based alloy for use in diamond cutting tools [J]. Materwiss. Werksttech., 2009, 40: 907
5 Shen S, Song Y Q, Wang L M, et al. Application of pre-alloyed powders for diamond tools [J]. Powder Metall. Ind., 2006, 16(6): 37
申 思, 宋月清, 汪礼敏等. 预合金粉末在金刚石工具中的应用 [J]. 粉末冶金工业, 2006, 16(6): 37
6 Luo X Y, Ma H Q, Huang M, et al. Research and application of cobalt-substitute prealloy powder for diamond tools [J]. Diam. Abras. Eng., 2006, (1): 18
罗锡裕, 麻洪秋, 黄 漫等. 金刚石工具预合金代钴粉末的研究及应用 [J]. 金刚石与磨料磨具工程, 2006, (1): 18
7 Konstanty J. Powder metallurgy diamond tools—A review of manufacturing routes [J]. Mater. Sci. Forum, 2007, 534-536: 1121
8 Wang C, Zhang X F, Wang C F, et al. Current research situation and development of Cu-based diamond tools made by powder metallurgy [J]. Powder Metall. Technol., 2012, 30: 140
王 闯, 张效芬, 王长福等. 粉末冶金Cu基金刚石工具的研究现状及进展 [J]. 粉末冶金技术, 2012, 30: 140
9 Polini W, Turchetta S. Evaluation of diamond tool wear [J]. Int. J. Adv. Manuf. Technol., 2005, 26: 959
10 Artem'ev V P, Sokolov E G, Kozachenko A D. Study of the interaction between composite solders and diamond [J]. Met. Sci. Heat Treat., 2013, 55: 313
11 Li W S, Jiang W, Feng L, et al. Effect of Sn content on microstructure and hardness of Cu based diamond sawing matrixes [J]. Mater. Sci. Eng. Powder Metall., 2016, 21: 457
李文生, 姜 威, 冯 力等. Sn含量对Cu基金刚石锯片胎体组织与硬度的影响 [J]. 粉末冶金材料科学与工程, 2016, 21: 457
12 Liu D X, Stephenson T F, Korotkin M, et al. Properties of diamond tool binders with fine carbonyl Ni powder additions [J]. Diam. Abras. Eng., 2008, (S1): 148
13 Sun Y C, Liu Y B, Wang Q S. Diamond Tools and Metallography [M]. Beijing: China Building Materials Industry Press, 1999: 102
孙毓超, 刘一波, 王秦生. 金刚石工具与金属学基础 [M]. 北京: 中国建材工业出版社, 1999: 102
14 Wu Y, Yang S L. Research and development prospect of high-elastic Cu-Ni-Sn alloy [J]. Shanghai Nonferrous Met., 2014, 35: 38
吴 语, 杨胜利. 高弹性合金Cu-Ni-Sn的研究与发展 [J]. 上海有色金属, 2014, 35: 38
15 Wang J, Yin J L, Yan B. Development and applications of Cu-Ni-Sn alloy [J]. Shanghai Nonferrous Met., 2004, 25: 184
王 军, 殷俊林, 严 彪. Cu-Ni-Sn合金的发展和应用 [J]. 上海有色金属, 2004, 25: 184
16 Zhang G M, Chen C, Wang X J, et al. Additive manufacturing of fine-structured copper alloy by selective laser melting of pre-alloyed Cu-15Ni-8Sn powder [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 4223
17 Cong S H, Han F, Wang X C. Heat treatment processes, microstructure and properties of super high strength Cu-Ni-Sn alloy [J]. Heat Treat. Met., 2010, 35(6): 43
从善海, 韩 芳, 汪旭超. 超高强Cu-Ni-Sn合金的热处理工艺与组织性能 [J]. 金属热处理, 2010, 35(6): 43
18 Han F. Research on process and performance of high intensity Cu-Ni-Sn alloy prepared by powder metallurgy [D]. Wuhan: Wuhan University of Science and Technology, 2012
韩 芳. 粉末冶金法制备高强度Cu-Ni-Sn合金的工艺及性能研究 [D]. 武汉: 武汉科技大学, 2012
19 Zuo K S, Xi S Q, Zhou J E, et al. Mechanical alloying of copper-zinc powders at cryogenic conditions [J]. Chin. J. Nonferrous Met., 2005, 15: 1577
左可胜, 席生岐, 周敬恩等. 铜锌粉末低温机械合金化 [J]. 中国有色金属学报, 2005, 15: 1577
20 Qi B S, Wang C G, Yao X, et al. Characteristics of Cr and Al powders by high energy ball milling [J]. Chin. J. Rare Met., 2000, 24: 325
齐宝森, 王成国, 姚 新等. 高能球磨金属铬、铝粉末的特征 [J]. 稀有金属, 2000, 24: 325
21 Zhuge L J, Li Y D, Jin Z M, et al. Mechanical alloying of Ni-Ti-Cu powders [J]. Mater. Sci. Technol., 1997, 5(2): 6
诸葛兰剑, 李亚东, 金宗明等. Ni-Ti-Cu粉末的机械合金化 [J]. 材料科学与工艺, 1997, 5(2): 6
22 Wang Y H, Wang M P, Hong B, et al. The study of cast structure and component segregation in Cu-15Ni-8Sn-0.4Si alloy [J]. Min. Metall. Eng., 2002, 22(3): 104
王艳辉, 汪明朴, 洪 斌等. Cu-15Ni-8Sn-0.4Si合金铸态组织结构及成分偏析研究 [J]. 矿冶工程, 2002, 22(3): 104
23 Xiong J, Wang L M, Pang P S, et al. Study on sintering behaviors and performance of 10% tin bronze powders [J]. Powder Metall. Ind., 2008, 18(3): 18
熊 洁, 汪礼敏, 庞鹏沙等. CuSn10青铜粉末热压烧结行为及性能的研究 [J]. 粉末冶金工业, 2008, 18(3): 18
24 Shi J G, Liu P, Jin X, et al. Selective laser melting experiment of Cu10Sn alloy [J]. Ind. Technol. Innov., 2018, 5(4): 7
史金光, 刘 平, 金 霞等. 选择性激光熔化Cu10Sn合金成型试验 [J]. 工业技术创新, 2018, 5(4): 7
25 Zhou Y J. Research on high-performance wear-resistant tin bronze alloy and its advanced processing technology [D]. Luoyang: Henan University of Science and Technology, 2012
周延军. 高性能耐磨锡青铜合金及其先进制备加工技术研究 [D]. 洛阳: 河南科技大学, 2012
26 Xie D L, Wan L, Song D D, et al. Effect of composition of FeCoCu pre-alloyed powders on sintering characters used for diamond tools [J]. Chin. J. Nonferrous Met., 2016, 26: 577
谢德龙, 万 隆, 宋冬冬等. 金刚石工具用FeCoCu预合金粉组成对烧结特性的影响 [J]. 中国有色金属学报, 2016, 26: 577
27 Dong S S, Liu X X, Li C Q, et al. Analysis on domestic situation and development trend of pre-alloyed metal powder for diamond tools in China [J]. Superhard Mater. Eng., 2012, 24(1): 43
董书山, 刘晓旭, 李长青等. 超硬材料工具用金属预合金粉末的国内发展现状及趋势 [J]. 超硬材料工程, 2012, 24(1): 43
28 Huang M, Chen Z, Wang F R, et al. Study on mechanical retention of matrix to impregnated diamond [J]. Diam. Abras. Eng., 2004, (4): 43
黄 漫, 陈 哲, 王凤荣等. 孕镶金刚石工具中金刚石与胎体间机械包镶力的研究 [J]. 金刚石与磨料磨具工程, 2004, (4): 43
29 Shen X, Yao J B, Ma H Q, et al. Study on properties of water atomized Cu-Sn alloy powder [J]. Diam. Abras. Eng., 2015, 35(3): 52
沈 翔, 姚炯斌, 麻洪秋等. Cu-Sn系水雾化合金粉性能研究 [J]. 金刚石与磨料磨具工程, 2015, 35(3): 52
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!