Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 231-239    DOI: 10.11900/0412.1961.2019.00150
Current Issue | Archive | Adv Search |
Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating
XIAO Hong,XU Pengpeng,QI Zichen(),WU Zonghe,ZHAO Yunpeng
National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
Download:  HTML  PDF(10940KB) 
Export:  BibTeX | EndNote (RIS)      

Both cold-rolled and hot-rolled steel/aluminum laminated composites exhibited obvious strain-hardening of steel layer because the rolling temperature, limited by the melting point of aluminum (about 660 ℃), was lower than dynamic recrystallization temperature of steel (about 710 ℃). This led to poor deformation ability of composite plates and subsequent processing cracks. And the initial bonding of cold-rolled steel/aluminum composite plates usually required more than 50% highly first pass reduction, which resulted in high requirement for rolling mill capacity, especially for medium or thick size composite plates. To solve above two problems simultaneously, in this study, the steel/aluminum composite plates were prepared by differential temperature rolling (DTR) with induction heating in an argon atmosphere. The bonding properties and microstructure of the steel/aluminum laminated composites were studied, and the effect of DTR process on the bonding properties was analyzed compared with the cold rolling process. The results show that dynamic recovery and recrystallization occurred with equiaxed grains appearing in the structure of the rolled carbon steel due to the higher heating temperature of the steel layer, and an equiaxed fine grain zone with an average grain size of approximately 5 μm was formed near the interface of the steel side, which greatly reduced the hardening phenomenon of the laminated composites compared with the cold rolled clad plate. The micro-interface of DTR steel/aluminum clad plate was tightly bonded without holes and gaps. The diffusion width of Al and Fe elements across the interface reached 2.4 μm, indicating the clad plate achieved a good metallurgical bonding state, and the fine grained zone near the interface improved the properties of the sheet. The combined effect made the shear strength of the DTR clad plates much higher than that of the cold-rolled plate. At 45% reduction, the shear strength of DTR composite plate reached 85 MPa, which was 7 times of cold-rolled composite plate with the same reduction (12 MPa). The fracture of cold-rolled composite plate occurred at the steel/aluminum interface, showing brittle fracture, while the fracture of DTR clad plates occurred in the aluminum alloy matrix with a large number of dimples in the shear section, showing the characteristics of plastic fracture.

Key words:  steel/aluminum composite plate      induction heating      differential temperature rolling      shear strength      microstructure     
Received:  08 May 2019     
ZTFLH:  TG335.81  
Fund: National Natural Science Foundation of China(51474190);Postgraduate Innovation Funding Project of Hebei Province(CXZZBS2019046)
Corresponding Authors:  Zichen QI     E-mail:

Cite this article: 

XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating. Acta Metall Sin, 2020, 56(2): 231-239.

URL:     OR

Table 1  Chemical compositions of commercial Q235 sheet and 6061 Al alloy sheet (mass fraction / %)


Ultimate tensile strength


Yield strength


Shear strength


Fracture elongation


Table 2  Mechanical properties of the used materials in the experiment
Fig.1  Schematic for the structure of billet plate
Fig.2  Schematic of differential temperature rolling (DTR) process with induction heating
Fig.3  Temperature variations in individual laminated plates under different induction currents and clearances between Q235 and 6061 (?Tmax—maximum temperature difference)(a) 300 A, 0.5 mm (b) 300 A,1 mm (c) 1800 A, 0.5 mm (d) 1800 A, 1 mm
Fig.4  Tensile-shear test and interface observation of the laminated composites(a) schematic of the sample (h0—total thickness, h1—Al thickness)(b) real image of tensile-shear sample (F—maximum shear stress)(c) fractured specimen(d) polished interface
Fig.5  Shear strengths of the laminated composites prepared by DTR and cold rolling (CR) under different reductions
Fig.6  SEM images showing bonding interfaces of laminated composites under different processes(a) CR, 45% reduction (b) CR, 55% reduction (c) CR, 67.5% reduction (d) DTR, 45% reduction
Fig.7  Low (a) and locally high (b) magnified metallographic structures of steel layer of the DTR composite plate
Fig.8  Interface element diffusion curves of the DTR composite plate
Fig.9  Element diffusion widths of the DTR and cold-rolled composite plates
Fig.10  Tensile-shear fracture morphologies and EDS maps (insets) of the laminated composites with 45% reduction(a) CR, steel side (b) CR, Al side (c) DTR, steel side (d) DTR, Al side
Table 3  EDS analysis of points 1~6 in Fig.10 (mass fraction / %)
[1] Liu G. Applications of steel-aluminum compound track in construction of line Daxing in Beijing urban mass transit [J]. Rail. Stand. Des., 2011, (1): 119
[1] (刘 岗. 钢铝复合轨在北京市轨道交通大兴线工程中的应用 [J]. 铁道标准设计, 2011, (1): 119)
[2] Wang C, Wang L Y, Zhao H Q, et al. Application of steel-aluminum composite plate-beam structure in car body [J]. Sci. Technol. Inform., 2012, (35): 140
[2] (王 冲, 王立颖, 赵鹤群等. 钢铝复合板梁式结构在车体上的应用 [J]. 科技信息, 2012, (35): 140)
[3] Han H D, Zhang P, Du Y H, et al. Research on manufacture for steel-backed aluminum-matrix bearing material [J]. Intern. Combust. Eng. Parts, 2008, (3): 18
[3] (韩海东, 张 鹏, 杜云慧等. 钢背铝基轴瓦材料复合新工艺探索 [J]. 内燃机配件, 2008, (3): 18)
[4] Liu L X. Corrosion and protection of joint of steel-Al explosive cladding [J]. Ordn. Mater. Sci. Eng., 2003, 26(1): 36
[4] (刘玲霞. 钢-铝爆炸复合接头材料的腐蚀与防护 [J]. 兵器材料科学与工程, 2003, 26(1): 36)
[5] Shiran M K G, Khalaj G, Pouraliakbar H, et al. Effects of heat treatment on the intermetallic compounds and mechanical properties of the stainless steel 321-aluminum 1230 explosive-welding interface [J]. Int. J. Min. Met. Mater., 2017, 24: 1267
[6] Song L, Sun B Y, Cui P P. Study on steel/aluminum solid-liquid composite casting and rolling [J]. Hot Work. Technol, 2018, 47(4): 126
[6] (宋 黎, 孙斌煜, 崔鹏鹏. 钢/铝固液复合铸轧研究 [J]. 热加工工艺, 2018, 47(4): 126)
[7] Grydin O, Gerstein G, Nürnberger F, et al. Twin-roll casting of aluminum-steel clad strips [J]. J. Manuf. Process., 2013, 15: 501
[8] Movahedi M, Kokabi A H, Seyed Reihani S M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization [J]. Mater. Des., 2011, 32: 3143
[9] Manesh H D, Taheri A K. Study of mechanisms of cold roll welding of aluminium alloy to steel strip [J]. Mater. Sci. Technol., 2004, 20: 1064
[10] Manesh H D, Shahabi H S. Effective parameters on bonding strength of roll bonded Al/St/Al multilayer strips [J]. J. Alloys Compd., 2009, 476: 292
[11] Wang C Y, Jiang Y B, Xi J X, et al. Interface formation and bonding mechanism of embedded aluminum-steel composite sheet during cold roll bonding [J]. Mater. Sci. Eng., 2017, A708: 50
[12] Wang C Y, Jiang Y B, Xie J X, et al. Effect of the steel sheet surface hardening state on interfacial bonding strength of embedded aluminum-steel composite sheet produced by cold roll bonding process [J]. Mater. Sci. Eng., 2016, A652: 51
[13] Wu B, Li L, Xia C D, et al. Effect of surface nitriding treatment in a steel plate on the interfacial bonding strength of the aluminum/steel clad sheets by the cold roll bonding process [J]. Mater. Sci. Eng., 2017, A682: 270
[14] Gao C, Li L, Chen X, et al. The effect of surface preparation on the bond strength of Al-St strips in CRB process [J]. Mater. Des., 2016, 107: 205
[15] Wang C Y, Liu X H, Jiang Y B, et al. Effects of annealing and cold roll-bonded interface on the microstructure and mechanical properties of the embedded aluminum-steel composite sheet [J]. Sci. Bull., 2018, 63: 1448
[16] Chen X, Li L, Zhou D J. Review on the formation and inhibition mechanism of Fe-Al intermetallic compound [J]. Mater. Rev., 2016, 30(13): 125
[16] (陈 鑫, 李 龙, 周德敬. 铝钢金属间化合物生长及其抑制机理的研究现状 [J]. 材料导报, 2016, 30(13): 125)
[17] Tang C L, Xu Q P, Weng H, et al. Influence of the surface treatment process on bonding properties of Al/steel(4A60/08AL) clad sheets by cold roll bonding [J]. Light Alloy Fabric. Technol., 2016, 44(6): 25
[17] (唐超兰, 许秋平, 翁 浩等. 表面处理工艺对冷轧铝/钢(4A60/08AL)复合板结合性能的影响 [J]. 轻合金加工技术, 2016, 44(6): 25)
[18] Li M Q, Jiang F L, Zhang H, et al. Deformation rule of steel/aluminum metal-laminate material during hot roll bonding [J]. Chin. J. Nonferrous Met., 2009, 19: 644
[18] (李民权, 蒋福林, 张 辉等. 钢/铝复合板热轧复合变形规律 [J]. 中国有色金属学报, 2009, 19: 644)
[19] Nezhad M S A, Ardakani A H. A study of joint quality of aluminum and low carbon steel strips by warm rolling [J]. Mater. Des., 2009, 30: 1103
[20] Yu J M, Yu Z S, Qi K M, et al. Bonding mechanism of steel-Al clad plate by rolling at different temperature [J]. Iron Steel, 1995, 30(8): 44
[20] (于九明, 于长生, 齐克敏等. 钢和铝异温轧制复合机理的研究 [J]. 钢铁, 1995, 30(8): 44)
[21] Xiao H, Qi Z C, Yu C, et al. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling [J]. J. Mater. Process. Technol., 2017, 249: 285
[22] Qi Z C, Yu C, Xiao H. Microstructure and bonding properties of magnesium alloy AZ31/CP-Ti clad plates fabricated by rolling bonding [J]. J. Manuf. Processes., 2018, 32: 175
[23] Jiao H, Zhang M, Yan Z J. Study on binding property of steel/aluminum laminated sheets fabricated by two-pass hot rolling [J]. New Technol. New Processes, 2015, (8): 95
[23] (焦 宏, 张 敏, 闫中建. 两道次热轧法制备钢/铝复合板的结合性能研究 [J]. 新技术新工艺, 2015, (8): 95)
[24] Li L, Zeng X Y, Chen X, et al. Influence of heat treatment on microstructure and mechanical properties of 4A60 Al/08Al steel clad strip by cold roll bonding [J]. Heat Treat. Met., 2015, 40(7): 28
[24] (李 龙, 曾祥勇, 陈 鑫等. 热处理对冷轧4A60铝/08Al钢复合带材组织及力学性能的影响 [J]. 金属热处理, 2015, 40(7): 28)
[25] Manesh H D, Taheri A K. Bond strength and formability of an aluminum-clad steel sheet [J]. J. Alloys Compd., 2003, 361: 138
[26] Sauvage X, Dinda G P, Wilde G. Non-equilibrium intermixing and phase transformation in severely deformed Al/Ni multilayers [J]. Scr. Mater., 2007, 56: 181
[27] Chung C Y, Zhu M, Man C H. Effect of mechanical alloying on the solid state reaction processing of Ni-36.5 at.% Al alloy [J]. Intermetallics, 2002, 10: 865
[28] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
[29] Sauvage X, Wetscher F, Pareige P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite [J]. Acta Mater., 2005, 53: 2127
[30] Sato K, Yoshiie T, Satoh Y, et al. Simulation of vacancy migration energy in Cu under high strain [J]. Mater. Sci. Eng., 2003, A350: 220
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[10] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[11] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[12] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[15] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
No Suggested Reading articles found!