Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (3): 411-418    DOI: 10.11900/0412.1961.2017.00135
Orginal Article Current Issue | Archive | Adv Search |
Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components
Weifeng HE1, Xiang LI1, Xiangfan NIE1,2(), Yinghong LI1, Sihai LUO1
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
2 School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
Cite this article: 

Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components. Acta Metall Sin, 2018, 54(3): 411-418.

Download:  HTML  PDF(2445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because the compressor thin-blades of aero-engine often fractured in service, laser shock processing was suggested to be applied as a surface strengthening technology. Aim at the problem of compressive residual stress relaxation in laser-peened compressor thin-blades, TC11 titanium alloy thin-components were treated by laser shock processing and then conducted in axial tensile-tensile fatigue test and thermal insulation in vacuum. X-ray diffraction tests were carried out to obtain the relaxation rules of residual stress under fatigue loading and thermal stress loading. In addition, the relaxation mechanisms of residual stress were indicated. Experiment results demonstrate that surface compressive residual stress relaxes by 53%, and 95% of stress relaxation occurs in the previous 5 fatigue cycles under the fatigue loading (maximum stress σmax=500 MPa, stress ratio R=0.1). The surface relaxation degree and severely-relaxed depth increase with fatigue loading, and the relaxation mechanism is that plastic deformation of local area material results in residual stress redistribution. Surface compressive residual stress relaxes by 3%, 29% and 48% respectively after thermal insulation for 120 min under the constant temperature of 200 ℃, 300 ℃ and 400 ℃. Surface compressive residual stress relaxes by 18% and 58% respectively after thermal insulation for 120 min under the altering temperature of 200 ℃+400 ℃ and 300 ℃+400 ℃. The relaxation all occurs in the previous 60 min. There is a similar trend with temperature in the aspect of severely-relaxed depth. The relaxation mechanism under thermal stress loading is that dislocations and grain-boundaries are activated to move and annihilated, and then plastic deformation recovery occurs. Due to the distinction of relaxation mechanisms, there is an obvious superimposed effect under the combined action of fatigue loading and thermal stress loading.

Key words:  thin-component      laser shock processing      X-ray diffraction      fatigue loading      thermal stress loading      stress relaxation      relaxation mechanism     
Received:  17 April 2017     
Fund: Supported by National Basic Research Program of China (No.2015CB057400) and National Natural Science Foundation of China (No.51505496), National Postdoctoral Program for Innovative Talents (No.BX201700077) and Youth Talents lifting Program of universities association in Shaanxi Province (No.20170510)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00135     OR     https://www.ams.org.cn/EN/Y2018/V54/I3/411

Fig.1  Schematics of dimensions and laser shock processing sketch of TC11 titanium alloy thin-component
Fig.2  Programs of thermal insulation treatment and residual stress test under constant temperature thermal insulation (a), altering thermal insulation between 200 ℃ and 400 ℃ (b), and altering thermal insulation between 300 ℃ and 400 ℃ (c)
Fig.3  Relaxation curves of surface residual stress during the previous 5 cyc (a) and during the latter cycles (b) (N—fatigue cycle)
Fig.4  Residual stress distribution curves on section before and after 10000 cyc (d—the depth of test point)
Fig.5  Residual stress distribution curves on section under different fatigue loadings
Fig.6  Residual stress distribution curves under different insulation temperatures in surface (a) and on section (b) (t—insulation time)
Fig.7  Residual stress distribution curves under different insulation temperatures in surface (a) and on section (b)
Fig.8  TEM images of surface microstructure in TC11 titanium alloy samples before (a) and after (b) thermal insulation at 350 ℃ for 10 h and the SAED patterns (insets)
Fig.9  Residual stress distribution curves under the combined action of fatigue loading and thermal stress loading
[1] Hong J, Zhang D Y, Chen L L.Review on investigation of high cycle fatigue failures for the aero engine blade[J]. J. Aeros. Power,2009, 24: 652(洪杰, 张大义, 陈璐璐. 气流激励下的叶片高周疲劳寿命研究的发展 [J]. 航空动力学报, 2009, 24: 652)
[2] Lindermann J, Buque C, Appel F.Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Mater., 2006, 54: 1155
[3] Avilés R, Albizuri J, Rodríguez A, et al.Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel[J]. Int. J. Fatigue, 2013, 55: 230
[4] Charles S M, Tao W, Lin Y, et al.Laser shock processing and its effects on microstructure and properties of metal alloys: A review[J]. Int. J. Fatigue, 2002, 24: 1021
[5] Peyre P, Fabbro R, Merrien P, et al.Laser shock processing of aluminium alloys. Application to high cycle fatigue behavior[J]. Mater. Sci. Eng., 1996, A210: 102
[6] Nie X F, He W F, Wang X D, et al.Effects of laser shock peening on microstructure and mechanical properties of TC17 titanium alloy[J]. Rare Met. Mater. Eng., 2014, 43: 1691(聂祥樊, 何卫锋, 王学德等. 激光冲击强化对TC17钛合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 1691)
[7] Gao Y K.Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy[J]. Acta Metall. Sin., 2016, 52: 915(高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915)
[8] Luong H, Hill M R.The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Mater. Sci. Eng., 2010, A527: 699
[9] Wei X L, Ling X.Numerical modeling of residual stress induced by laser shock processing[J]. Appl. Surf. Sci., 2014, 301: 557
[10] Prevéy P.The effect of cold work on the thermal stability of residual compression in surface enhanced IN718 [A]. 20th ASM Materials Solutions Conference & Exposition[C]. Missouri: ASM, 2000: 1
[11] Dahotre N B, Harimkar S P.Laser Fabrication and Machining of Materials[M]. New York: Springer, 2008: 477
[12] Ren X D, Zhang Y K, Yongzhuo H F, et al.Effect of laser shock processing on the fatigue crack initiation and propagation of 7050-T7451 aluminum alloy[J]. Mater. Sci. Eng., 2011, A528: 2899
[13] He W F, Li Y H, Li Q P, et al.Vibration fatigue performance and strengthening mechanism of TC6 titanium alloy by laser shock peening[J]. Rare Met. Mater. Eng., 2013, 42: 1643(何卫锋, 李应红, 李启鹏等. LSP提高TC6钛合金振动疲劳性能及强化机理研究 [J]. 稀有金属材料与工程, 2013, 42: 1643)
[14] Maawad E, Sano Y, Wagner L, et al.Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys[J]. Mater. Sci. Eng., 2012, A536: 82
[15] Prevéy P, Hornbach D, Mason P.Thermal residual stress relaxation and distortion in surface enhanced gas turbine engine components [A]. Proceedings of the 17th Heat Treating Society Conference and Exposition and the 1st International Induction Heat Treating Symposium[C]. Materials Park, OH: ASM, 1998: 3
[16] Sakai T, Akita K, Ohya S, et al.The effect of static and fatigue loading on residual stress induced by laser peening[J]. J. Soc. Mater. Sci., 2008, 57: 648
[17] Hatamleh O, Rivero I V, Swain S E.An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints[J]. Mater. Des., 2009, 30: 3367
[18] Meng X K, Zhou J Z, Su C, et al.Residual stress relaxation and its effects on the fatigue properties of Ti6Al4V alloy strengthened by warm laser peening[J]. Mater. Sci. Eng., 2017, A680: 297
[19] Zhou Z, Gill A S, Telang A, et al.Experimental and Finite Element Simulation Study of Thermal Relaxation of Residual Stresses in Laser Shock Peened IN718 SPF Superalloy[J]. Exp. Mech., 2014, 54: 1597
[20] Ren X D, Zhan Q B, Yuan S Q, et al.A finite element analysis of thermal relaxation of residual stress in laser shock processing Ni-based alloy GH4169[J]. Mater. Des., 2014, 54: 708
[21] Li Q P, Li Y H, He W F, et al.Residual stress of laser peening processed TC17 and stress relax prediction model based on support vector machines theory[J]. J. Aeros. Power, 2012, 27: 307(李启鹏, 李应红, 何卫锋等. TC17钛合金激光喷丸应力场及支持向量机应力热松弛模型 [J]. 航空动力学报, 2012, 27: 307)
[22] Li Y H, Zhou L C, He W F, et al.The strengthening mechanism of a nickle-based alloy after laser shock processing at high temperatures[J]. Sci. Tech. Adv. Mater., 2013, 14: 0550010
[23] Jiao Y, He W F, Luo S H, et al.Study of micro-scale laser shock processing without coating improving the high cycle fatigue performance of K24 simulated blades[J]. Chin. J. Lasers, 2015, 42: 1003002(焦阳, 何卫锋, 罗思海等. 无保护层激光冲击提高K24合金高周疲劳性能研究 [J]. 中国激光, 2015, 42: 1003002)
[24] Altenberger I, Nalla R K, Sano Y, et al.On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 ℃[J]. Int. J. Fatigue, 2012, 44: 292
[25] “Chinese Aeronautical Material handbook” Edits Committee. Chinese Aeronautical Material Handbook [M]. 2nd Ed., Beijing: Chinese Standard Press, 2002: 235(《中国航空材料手册》总编委会. 中国航空材料手册 [M]. 第2版, 北京: 中国标准出版社, 2002: 235)
[26] Nie X F, He W F, Zang S L, et al.Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chin. J. Lasers, 2013, 40: 0803006(聂祥樊, 何卫锋, 臧顺来等. 激光喷丸提高TC11钛合金高周疲劳性能的试验研究 [J]. 中国激光, 2013, 40: 0803006)
[27] Nie X F, He W F, Zang S L, et al.Effects on structure and mechanical properties of TC11 titanium alloy by laser shock peening[J]. J. Aeros. Power, 2014, 29: 321(聂祥樊, 何卫锋, 臧顺来等. 激光冲击对TC11钛合金组织和力学性能的影响 [J]. 航空动力学报, 2014, 29: 321)
[28] Braisted W, Broekman R.Finite element simulation of laser shock Peening[J]. Int. J. Fatigue, 1999, 21: 719
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[3] LI Changji,ZOU Minjie,ZHANG Lei,WANG Yuanming,WANG Sucheng. High-Resolution X-Ray Diffraction Analysis of Epitaxial Films[J]. 金属学报, 2020, 56(1): 99-111.
[4] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[5] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[6] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[7] Yutuo ZHANG,Cong LI,Pei WANG,Dianzhong LI. IN SITU SYNCHROTRON X-RAY DIFFRACTION INVESTIGATION ON TENSILE PROPERTIES OF 9Ni STEEL[J]. 金属学报, 2016, 52(4): 403-409.
[8] Shenghua ZHANG,Pei WANG,Dianzhong LI,Yiyi LI. INVESTIGATION OF TRIP EFFECT IN ZG06Cr13Ni4Mo MARTENSITIC STAINLESS STEEL BY IN SITU SYNCHROTRON HIGH ENERGY X-RAY DIFFRACTION[J]. 金属学报, 2015, 51(11): 1306-1314.
[9] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[10] CAO Tieshan, FANG Xudong, CHENG Congqian, ZHAO Jie. CREEP BEHAVIOR OF TWO KINDS OF HR3C HEAT RESISTANT STEELS BASED ON STRESS RELAXATION TESTS[J]. 金属学报, 2014, 50(11): 1343-1349.
[11] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[12] LUO Xinmin ZHAO Guangzhi ZHANG Yongkang CHEN Kangmin LUO Kaiyu REN Xudong. LASER SHOCK PROCESSING OF Ti-6Al-4V AND ANALYSIS OF ITS MICROSTRUCTURE RESPONSE[J]. 金属学报, 2012, 48(9): 1116-1122.
[13] TAN Jun LI Cong SUN Chao YING Shihao LIAN Shanshan KAN Xiwu FENG Keqin. THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr–4 ALLOY DURING STRESS RELAXATION[J]. 金属学报, 2009, 45(2): 173-177.
[14] ZHANG Jiwang LU Liantao ZHANG Weihua. ANALYSIS ON FATIGUE PROPERTY OF MICROSHOT PEENED MEDIUM CARBON STEEL[J]. 金属学报, 2009, 45(11): 1378-1383.
[15] Guo-Dong ZHANG. Finite Element Simulation for Welding Residual Stress and Creep Damage of Welded Joint[J]. 金属学报, 2008, 44(7): 848-852 .
No Suggested Reading articles found!