Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (11): 1461-1468    DOI: 10.11900/0412.1961.2017.00099
Orginal Article Current Issue | Archive | Adv Search |
Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique
Guotian WANG, Hongsheng DING(), Ruirun CHEN, Jingjie GUO, Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique. Acta Metall Sin, 2017, 53(11): 1461-1468.

Download:  HTML  PDF(8701KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to their excellent high-temperature strength, and good oxidation resistance, Ni3Al-based alloys have long attracted considerable interest as a class of high-temperature structural material. These properties, combined with their unique high thermal conductivity, make them ideal for special applications, such as blades in gas turbines and jet engines. However, polycrystalline Ni3Al alloys show almost no ductility and extremely low fracture resistance at ambient temperatures. Ni3Al alloys with the high ductility at room-temperature can be adjusted by the microstructure through directional solidification (DS) and matching. It has been shown that the electric field can refine the solidification structure, reduce the dendrite spacing, promote the diffusion and change the solute redistribution in the solidification process. In order to improve the room temperature ductility of Ni3Al alloy, the effect of current intensity on microstructure of DS Ni-25Al alloy is investigated. In this work, the effects of constant current intensity and NiAl phase on the microstructure are researched. The results show that in the DC electric field, as the result of the aggregation of current along dendrite tip and the Joule heat at the tip of dendrite, the primary dendritic spacing (λ) decreases with the increasing of current intensity. And the solid-liquid interface tends to be straight resulting from the Joule heat and Peltier effect caused by the segregation of current and the difference in conductivity between solid and liquid interface. When no direct current is applied the DS samples contain the L12 structure of Ni3Al matrix and B2 structure of NiAl precipitate phase. The microstructure is a duplex structure which consist of gray Ni3Al matrix and black NiAl precipitates. NiAl precipitates with regular shape and has obvious orientation along with the growth direction. When the DC current is applied, NiAl precipitates is irregular and dispersion and has no obvious directionality, due to Joule heat effect generated by the current effect, the undercooling increased and the precipitated NiAl phase transformed into thin martensite NiAl phase with twin crystal symmetry from the NiAl-B2 type structure.

Key words:  Ni3Al      intermetallics      DC electric field      directional solidification      microstructure     
Received:  27 March 2017     
ZTFLH:  TG244.3  
  TF141.6  
Fund: Supported by National Natural Science Foundation of China (No.51471062)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00099     OR     https://www.ams.org.cn/EN/Y2017/V53/I11/1461

Fig.1  Schematic of electromagnetic continuous casting process
Fig.2  XRD spectra of directional solidification region of Ni3Al alloys at different current intensities
Fig.3  SEM images of directionally solidified Ni3Al at current intensities of 0 A (a), 5 A (b), 10 A (c), 15 A (d) and 20 A (e)
Fig.4  SEM images of directionally solidified Ni3Al lamellar microstructures at current intensities of 5 A (a), 10 A (b), 15 A (c) and 20 A (d)
Fig.5  TEM image and SAED patterns (insets) of directionally solidified Ni3Al at current intensity of 0 A
Fig.6  SAED pattern of NiAl phase in directionally solidified alloy at current intensity of 15 A
Fig.7  TEM image and SAED pattern (inset) of NiAl phase in directionally solidified alloy at current intensity of 20 A
Fig.8  Macro-profiles of solidification interfaces of directionally solidified Ni3Al rod at current intensities of 0 A (a), 5 A (b), 10 A (c), 15 A (d) and 20 A (e)
Fig.9  Effect of electric current intensity on the concave depth Δh
Fig.10  Cross-sectional OM images of directional solidified Ni3Al at current intensities of 0 A (a), 5 A (b), 10 A (c), 15 A (d) and 20 A (e)
Fig.11  Variation of primary dendritic spacing λ with current intensity
[1] Raju S V, Oni A A, Godwal B K, et al.Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure[J]. J. Alloys Compd., 2015, 619: 616
[2] Ivanovski V N, Umi?evi? A, Belo?evi?-?avor J, et al. Local structure study of Fe dopants in Ni-deficit Ni3Al alloys[J]. J. Alloys Compd., 2015, 651: 705
[3] Zhang H J, Xiao J F, Wen W D, et al.Study on a statistical unit cell model for Ni3Al-base superalloy[J]. Mech. Mater., 2016, 98: 1
[4] Liu W, Krol T, Nembach E.Precipitation strengthening, yield stress anomaly and strain rate sensitivity of an L12-ordered intermetallic (Ni, Co)3(Al, Ti) alloy[J]. Scr. Mater., 1998, 39: 1419
[5] Sun B D, Li D Q, Xu Y, et al.The effects of RE on as cast morphology of (NiAl+Ni3Al) intermetallics[J]. J. Shanghai Jiaotong Univ., 1997, 31(1): 83(孙宝德, 郦定强, 徐颍等. 稀土对(NiAl+Ni3Al)双相区金属间化合物铸态组织的影响[J]. 上海交通大学学报, 1997, 31(1): 83)
[6] Peng P, Zhou Z, Xie Q, et al.Development of rapidly solidified NiAlFe based shape memory alloys[J]. Mater. Rev., 1996, (3): 20(彭平, 周征, 谢泉等. 快速凝固NiAlFe系形状记忆合金的研究进展[J]. 材料导报, 1996, (3): 20)
[7] Taniguchi S, Yasuda H, Takatani K.Preface to the special issue on “advanced application of electromagnetic force to materials processing”[J]. ISIJ Int., 2003, 43: 799
[8] Feonychev A I, Bondareva N V.Effect of a rotating magnetic field on convection stability and crystal growth in zero gravity and on the ground[J]. J. Eng. Phys. Thermophys., 2003, 77: 731
[9] Misra A K.A novel solidification technique of metals and alloys: Under the influence of applied potential[J]. Metall. Trans., 1985, 16A: 1354
[10] Misra A K.Misra technique1 applied to solidification of cast iron[J]. Metall. Trans., 1986, 17A: 358
[11] Ahmed S, Bond R, McKannan E C. Solidification processing superalloys in an electric field[J]. Adv. Mater. Proc., 1991, 140: 30
[12] Ahmed S, McKannan E. Control of γ' morphologyin nickel base superalloys through alloy design and densification processing under electric field[J]. Mater. Sci. Technol., 1994, 10: 941
[13] Ding H S, Zhang Y, Jiang S Y, et al.Influences of pulse electric current treatment on solidification microstructures and mechanical properties of Al-Si piston alloys[J]. China Foundry, 2009, 6: 24
[14] Wang J, Yin J J, Ding Y T, et al.Effect of direct current electric field on the microstructure of ZA27 alloy[J]. Foundry, 2003, 52: 84(王劲, 尹建军, 丁雨田等. 直流电场对ZA27合金凝固组织的影响[J]. 铸造, 2003, 52: 84)
[15] Pfann W G, Wagner R S.Principles of field freezing[J]. Trans. Metall. Soc. AIME, 1962, 224: 1139
[16] Xu Q G, Wu B L, Wan G, et al.Effect of direct current electric fieid on structure of directionally solidified Al-4.5%Cu alloy[J]. J. Aeronaut. Mater., 2006, 26(1): 16(徐前刚, 武保林, 万刚等. 直流电场对Al-4.5%Cu合金定向凝固组织的影响[J]. 航空材料学报, 2006, 26(1): 16)
[17] Guo F J, Li L Z, Cang D Q, et al.Solute activity change model of binary liquid alloys in electrical field[J]. J. Univ. Sci. Technol. Beijing, 2005, 27: 27(郭发军, 李玲珍, 苍大强等. 电场作用下二元液态合金中溶质活度变化理论模型[J]. 北京科技大学学报, 2005, 27: 27)
[18] Chang G W, Yuan Y J, Wang Z D, et al.Effect of electric current density on columnar crystal spacing during continuous unidirectional solidification[J]. Acta Metall. Sin., 2000, 36: 30(常国威, 袁永军, 王自东等. 电流密度对定向凝固组织中柱状晶间距的影响[J]. 金属学报, 2000, 36: 30)
[19] Li W F, Yang Y S, Yu L, et al.Effect of direct current electric field on the microstructure of nickel-based superalloy K417G[J]. J. Mater. Eng., 2001, (9): 7(李万锋, 杨院生, 于力等. 直流电场作用对K417G镍基高温合金凝固组织的影响[J]. 材料工程, 2001, (9): 7)
[20] Prodhan A, Sanyal D.Cooling curves analysis of aluminium solidified without and with magnetic or electric field[J]. J. Mater. Sci. Lett., 1997, 16: 958
[21] ?ad?rl? E, Kaya H, Gündüz M.Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb-Cd eutectic alloy[J]. Mater. Res. Bull., 2003, 38: 1457
[22] B?yük U, Mara?l? N, Kaya H, et al.Directional solidification of Al-Cu-Ag alloy[J]. Appl. Phys., 2009, 95A: 923
[23] Tian S.The Physical Properties of Materials [M]. Beijing: Beihang University Press, 2004: 38(田莳. 材料物理性能 [M]. 北京: 北京航空航天大学出版社, 2004: 38)
[24] Fu D J, Huang L G, Li S.Effect of DC electric field on microstructure and properties of Al-5Fe based alloy[J]. Ordnance Mater. Sci. Eng., 2013, 36(5): 46(付大军, 黄立国, 李爽. 直流电场对Al-5Fe基合金组织和性能的影响[J]. 兵器材料科学与工程, 2013, 36(5): 46)
[25] He S X, Wang J, Zhou Y H.Application of electric current during metal solidification process[J]. Spec. Casting Nonferrous Alloys, 2001, (5): 28(何树先, 王俊, 周尧和. 电流在金属凝固过程中的应用[J]. 特种铸造及有色合金, 2001, (5): 28)
[26] Liu J, Li Z H, Cen Q H, et al.Effect of external electric field on solidification structure of alloy[J]. Foundry, 2012, 61: 877(刘瑾, 黎振华, 岑启宏等. 外加电场对合金凝固组织的影响[J]. 铸造, 2012, 61: 877)
[27] Wiegel M E K, Matthiesen D H. Determination of the peltier coe-fficient of germanium in a vertical Bridgman-Stockbarger furnace[J]. J. Cryst. Growth, 1997, 174: 194
[28] Corre S, Duffar T, Bernard M, et al.Numerical simulation and validation of the Peltier pulse marking of solid/liquid interfaces[J]. J. Cryst. Growth, 1997, 180: 604
[29] Huang L G, Fu D J, Gao Z Y.Application of continuous electric field in metal solidification[J]. J. Mater. Eng., 2011, (4): 94(黄立国, 付大军, 高志玉. 连续电流场在金属凝固过程中的应用研究[J]. 材料工程, 2011, (4): 94)
[30] Gu G D, Xu Y Y, An G Y, et al.Cellular growth of Sn-5%Bi alloy in electric field[J]. Chin. J. Mech. Eng., 1991, 27(5): 37(顾根大, 徐雁允, 安阁英等. 电场作用下Sn-5%Bi合金的胞晶生长[J]. 机械工程学报, 1991, 27(5): 37)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[11] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!