Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (9): 1065-1074    DOI: 10.11900/0412.1961.2017.00005
Orginal Article Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging
Mingzhe XI(), Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO
Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging. Acta Metall Sin, 2017, 53(9): 1065-1074.

Download:  HTML  PDF(14857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The titanium alloy parts, which have been formed by traditional laser additive manufacturing (LAM) method, usually have obviously different microstructure from wrought microstructure of titanium alloy and show room temperature mechanical anisotropy. In order to make the LAMed titanium alloy parts get the same microstructure and mechanical properties as wrought titanium alloy, a new technology of LAM called consecutive point-mode forging and laser rapid forming (CPF-LRF) has been proposed. During CPF-LRF process, deposited TC11 titanium alloy by laser rapid forming (LRF) was deformed by consecutive point-mode forging (CPF), and then on the surface of the deformed TC11 titanium alloy, new LRF process started over again. Both LRF and CPF were performed alternatively throughout the process of the fabrication of a TC11 titanium alloy part. Microstructures and mechanical properties of the CPF-LRFed TC11 alloy sample have been investigated. The average grain size of equiaxed grains of the CPF-LRFed TC11 alloy sample is 48.7 μm. The equiaxed grains have continuous grain boundary α phase. The microstructure of the equiaxed grain is bimodal microstructure consisting of primary α phase lath and transformed β. During CPF-LRF process, being plastically deformed by CPF, the surface deformation zone of the thick-wall TC11 titanium alloy part is 1.5 mm depth and its deformation degree is 20%. During a new layer deposited on the surface of the CPF cold deformed TC11 titanium alloy part, when laser beam scans through, about 1 mm thick (four layers) cold deformed titanium alloy in the heat affected zone of laser melting pool is heated up above β-transus temperature of TC11 titanium alloy in which static recrystallization complete within time interval of 0.86 s. The mechanical properties indicate that compared with the tensile properties at room temperature of TC11 alloy forged piece, the CPF-LRFed TC11 alloy has higher strength and less ductility. Fracture analysis indicates that intergranular fracture is mainly responsible for the poor ductility of CPF-LRFed TC11 alloy.

Key words:  consecutive point-mode forging      laser rapid forming      TC11 titanium alloy      microstructure      tensile property     
Received:  06 January 2017     
ZTFLH:  TG132.3  
Fund: Supported by National Natural Science Foundation of China (Nos.51375426 and 51375245)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00005     OR     https://www.ams.org.cn/EN/Y2017/V53/I9/1065

Fig.1  Schematic of technical process of consecutive point-mode forging and laser rapid forming (CPF-LRF) (a) laser rapid forming (b) consecutive point-mode forging
Fig.2  Sampling location of tensile specimen (a) and gemometric size of tensile specimen (unit: mm) (b)
Fig.3  OM images of xz cross-section of TC11 alloy sample (a) overall view (b) layers N+5 and N+4, showing columnar grains (c~g) layers N+3, N+2, N+1, N and N-1, respectively, showing equiaxed grains
Fig.4  SEM images of layers (N+4)~(N-1) of xz cross-section of the CPF-LRFed TC11 alloy sample
(a) layer N+4, showing columnar grains (Inset shows widmanst?tten microstructure) (b~d) layers (N+3)~(N+1), showing equiaxed grains (Insets show Widmanst?tten microstructure )(e, f) layers N and N-1, showing continuous grain boundary α phase (Insets show special duplex microstructure consisting of lath αp and transformed β)
Fig.5  Microhardness of the top eight layers of xz cross-section of the CPF-LRFed TC11 alloy sample
Fig.6  Tensile fracture morphologies of CPF-LRFed TC11 alloy sample
(a) macro-fractography of the CPF-LRFed TC11 alloy sample (b) high magnified image of zone 1 in Fig.6a, showing steps and intergranular fracture zones (c) high magnified image of zone 2 in Fig.6a, showing trangranular fracture zone (d) high magnified image of zone 3 in Fig.6c, showing dimples
Manufacturing method σs / MPa σb / MPa Elongation / %
CPF-LRFed 1040±12 1146±11 6.2±0.8
β forged[25]
α+β forged[25]
1020
985
1110
1043
9.7
15.3
Table 1  Tensile properties of CPF-LRFed TC11 titanium alloy
Fig.7  Tensile stress-strain curves of CPF-LRFed TC11 titanium alloy at room temperature
Fig.8  Slip-lines field of rigid flat punch pressing in semi-infinite high billet (2b—width of flat punch, d1—depth of plastically deformed zone, σy—normal stress on the contact surface between flat punch and billet)
Fig.9  Schematics of evolution of bgrain morphology of TC11 titanium alloy during CPF-LRF (a~e)
[1] Song H W, Zhang S H, Cheng M.Subtransus deformation mechanisms of TC11 titanium alloy with lamellar structure[J]. Nonferrous Met. Soc. China., 2010, 20: 2168
[2] Hua Y Q, Bai Y C, Ye Y X, et al.Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Appl. Surf. Sci., 2013, 283: 775
[3] Zhao W Q, Chen J, Yang J Q, et al.Influences of Laser Solid Forming Process on Microstructure and Mechanical Properties of TC11 Titanium Alloy[J]. Appl. Laser., 2012, 32: 479(赵卫强, 陈静, 杨杰穷等. 激光立体成形工艺对TC11钛合金组织和力学性能的影响[J]. 应用激光, 2012, 32: 479)
[4] Huang Y, Chen J, Zhang F Y, et al.Influence of heat treatment on microstructure of laser solid forming Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys[J]. Rare Met. Mater. Eng., 2009, 38: 2146(黄瑜, 陈静, 张凤英等. 热处理对激光立体成形 TC11 钛合金组织的影响[J]. 稀有金属材料与工程, 2009, 38: 2146)
[5] Song H W, Zhang S H, Chen M.Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure[J]. Def. Technol., 2014, 10: 40
[6] Liu F C, Lin X, Zhao W W.Effects of Solution Treatment Temperature on Micro-structures and Properties of Laser Solid Forming GH4169 Superalloy[J]. Rare Met. Mater. Eng., 2010, 39: 1519
[7] Wang Y D, Tang H B, Fang Y L, et al.Microstructure and mechanical properties of laser melting deposited 1Cr12Ni2WMoVNb steel[J]. Mater. Sci. Eng., 2010, A527: 4804
[8] Zhang Q, Chen J, Lin X, et al.Grain morphology control and texture characterization of laser solid Formed Ti6Al2Sn2Zr3Mo1.5Cr2Nb titanium alloy[J]. J. Mater. Process. Technol., 2016, 238: 202
[9] Zhang Q, Yao J, Mazumder J.Laser direct metal deposition technology and microstructure and composition segregation of Inconel 718 superalloy[J]. J. Iron. Steel Res. Int., 2011, 18: 73
[10] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[11] Wu X, Liang J, Mei J, et al.Microstructures of laser deposited Ti-6Al-4V[J]. Mater. Des., 2004, 25: 137
[12] Kobryn P A, Semiatin S L.Microstructure and texture evolution during solidification processing of Ti-6Al-4V[J]. J. Mater. Process. Technol., 2003, 135: 330
[13] Kelly S M, Kampe S L.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2004, 35A: 1861
[14] Mok S H, Bi G, Folkes J, et al.Deposition of Ti-6Al-4V using a high powerdiode laser and wire, Part I: Investigation on the process characteristics[J]. Surf. Coat. Technol., 2008, 202: 3933
[15] Xi M Z, Zhou W, Shang J Y, et al.Effect of heat treatment on microstructure and mechanical properties of consecutive point-mode forging and laser rapid forming GH4169 alloy[J]. Acta Metall. Sin., 2017, 2: 239(席明哲, 周玮, 尚俊英等. 热处理对连续点式锻压激光快速成形GH4169合金组织与拉伸性能的影响[J].金属学报, 2017, 2: 239)
[16] Ren H S, Tian X J, Liu D, et al.Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1856
[17] Ren H S, Liu D, Tang H B, et al.Microstructure and mechanical properties of a graded structural material[J]. Mater. Sci. Eng., 2014, A611: 362
[18] Zhu Y Y, Tian X J, Li J, et al.Microstructure evolution and layer bands of laser melting deposition Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. J. Alloys Compd., 2014, 616: 468
[19] Wang F, Williams S, Colegrave P, et al.Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metall. Mater. Trans., 2013, 44A: 968
[20] Kampe S L, Kelly S M.Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part I. Microstructural characterization[J]. Metall. Mater. Trans., 2014, 35A: 1861
[21] Ivasishin O M, Markovsky P E, Matviychuk Y V, et al.A comparative study of the mechanical properties of high-strength -titanium alloys[J]. J. Alloys Compd., 2008, 457: 296
[22] Liu C M, Wang H M, Tian X J, et al.Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Mater. Sci. Eng., 2013, A586: 323
[23] Yang Y, Xu F, Huang A J, et al.Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α+β phase field[J]. Acta Metall. Sin., 2005, 41: 713(杨义, 徐峰, 黄爱军等. 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化[J]. 金属学报, 2005, 41: 713)
[24] Liu C M, Wang H M, Tian X J, et al.Development of a pre-heat treatment for obtaining discontinuous grain boundary α in laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Mater. Sci. Eng., 2014, A604: 176
[25] Zhu H, Liao H.Effect of forging temperature on microstructure and mechanical properties of TC11 titanium alloy[J]. Hot Working Technol., 2013, 42: 127(朱红, 廖鸿. 锻造温度对TC11钛合金组织和性能的影响[J]. 热加工工艺, 2013, 42: 127)
[26] Zhao D W, Liu X H, Wang G D.A direct demonstration to consistency of slip line solution with minimum upper-bound solution[J]. J. Northeast Univ., 1994, 15: 189(赵德文, 刘相华, 王国栋. 滑移线解与最小上界解一致的证明[J]. 东北大学学报, 1994, 15: 189)
[27] Liu F C, Lin X, Huang C P, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J]. J. Alloys Compd., 2011, 509: 4505
[28] Xi M Z, Liu J B, Zhao Y, et al.Microstructures of heat treatment and properties of TA15 titanium alloy formed by the technology of laser rapid forming combined with continuous point forging[J].Chin. J. Lasers, 2016, 43: 0203001-1(席明哲, 刘静波, 赵毅等. 连续点式锻压激光快速成形TA15钛合金热处理组织与性能[J]. 中国激光, 2016, 43: 0203001-1)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!