Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (2): 211-219    DOI: 10.11900/0412.1961.2016.00353
Orginal Article Current Issue | Archive | Adv Search |
Hot Cracking Behavior of Mg-5Al-xCa Alloys
Feng WANG(),Haikuo DONG,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

Feng WANG,Haikuo DONG,Zhi WANG,Pingli MAO,Zheng LIU. Hot Cracking Behavior of Mg-5Al-xCa Alloys. Acta Metall Sin, 2017, 53(2): 211-219.

Download:  HTML  PDF(6574KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Al-Ca base alloys have great potential for application because of its low cost and good high temperature creep properties, but its higher hot cracking susceptibility greatly limits the application of the alloy. The effect of Ca addition on the hot cracking susceptibility of Mg-5Al-xCa (x=0.5, 1.0, 2.0, 3.0, 4.0, 5.0, mass fraction, %) alloys at the pouring temperature 700 ℃ and mold temperature 200 ℃ was studied by using hot cracking curve test, solidification curve test, OM, XRD and SEM. The results showed that the hot cracking susceptibility of alloys decreased with increasing Ca addition until to 4.0%, and the Mg-5Al-4.0Ca alloy had minimal hot cracking susceptibility, which cracking susceptibility coefficient was only 0.824. But when Ca addition increased to 5.0%, the hot cracking susceptibility of the alloy increased, and the cracking susceptibility coefficient increased to 0.96. The appropriate Ca addition can reduce the precipitation temperature of α-Mg in Mg-5Al-xCa alloys, inhibit precipitation of Mg17Al12 phase, narrow solidification temperature range of the alloy and increase eutectic content, which are helpful for the alloy having a stronger ability of compensation at the solidification end to decrease hot cracking susceptibility. But excessive Ca addition will increase the numbers of brittle phases containing Ca and coarsen the microstructure, resulting in the increase of hot cracking susceptibility.

Key words:  Mg-Al-Ca alloy      hot cracking susceptibility      solidification curve      microstructure     
Received:  02 August 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51504153 and 51571145) and Natural Science Foundation of Liaoning Province (No.201602548)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00353     OR     https://www.ams.org.cn/EN/Y2017/V53/I2/211

Alloy Al Ca Mg
Mg-5Al-0.5Ca 4.65 0.42 Bal.
Mg-5Al-1.0Ca 4.80 0.83 Bal.
Mg-5Al-2.0Ca 4.59 1.67 Bal.
Mg-5Al-3.0Ca 4.81 2.54 Bal.
Mg-5Al-4.0Ca 4.67 3.61 Bal.
Mg-5Al-5.0Ca 4.52 4.51 Bal.
Table 1  Chemical compositions of Mg-5Al-xCa alloys (mass fraction / %)
Fig.1  Schematic of hot cracking system (a) and hot cracking specimen (b)
Fig.2  Photographs of hot cracking specimens for Mg-5Al-xCa alloys
(a) x=0.5 (b) x=1.0 (c) x=2.0 (d) x=3.0 (e) x=4.0 (f) x=5.0
Fig.3  Hot cracking curves of Mg-5Al-xCa alloys (T—temperature)
(a) x=0.5 (b) x=1.0 (c) x=2.0 (d) x=3.0 (e) x=4.0 (f) x=5.0
Alloy Hot crack initiation Hot crack propagation
θi / ℃ fs-i / % Fr / N tp / s vP / (Ns-1)
Mg-5Al-0.5Ca 467 98.2 0.614 0.72 0.853
Mg-5Al-1.0Ca 451 97.4 0.536 1.26 0.425
Mg-5Al-2.0Ca 430 97.1 0.371 0.91 0.408
Mg-5Al-3.0Ca 434 97.6 0.215 1.17 0.184
Mg-5Al-4.0Ca - - - - -
Mg-5Al-5.0Ca 441 98.5 2.079 2.67 0.779
Table 2  Results of hot cracking test for Mg-5Al-xCa alloys
Fig.4  Solidification curves of Mg-5Al-xCa alloys (ΔT—solidification temperature range)
(a) x=0.5 (b) x=1.0 (c) x=2.0 (d) x=3.0 (e) x =4.0 (f) x=5.0
Alloy Peak A Peak B Peak C Peak D Peak E
α-Mg L→α+C14 L→α+C36 L+C36 → α+A12 L→α+C14+C36
Mg-5Al-0.5Ca 621 525 513 424 -
Mg-5Al-1.0Ca 619 525 519 - -
Mg-5Al-2.0Ca 614 528 521 - -
Mg-5Al-3.0Ca 610 - 528 - -
Mg-5Al-4.0Ca 598 - 528 - 511
Mg-5Al-5.0Ca 598 - 528 - 512
Table 3  Key point reactions and reaction temperatures corresponding to Mg-5Al-xCa alloys solidification curves in Fig.4 (℃)
Fig.5  Solidification temperature range and hot cracking susceptibility coefficient for Mg-5Al-xCa alloys
Fig.6  Microstructures of initial hot crack (a~c) and crack extension end (d~f) of Mg-5Al-xCa alloys
(a, d) x=3.0 (b, e) x=4.0 (c, f) x=5.0
Fig.7  SEM images of Mg-5Al-xCa alloys
(a) x=0.5 (b) x=1.0 (c) x=2.0 (d) x=3.0 (e) x=4.0 (f) x=5.0
Fig.8  XRD spectra of Mg-5Al-xCa alloys
Fig.9  SEM images of the crack extension ends (a) and local magnification (b) for Mg-5Al-4.0Ca alloy (C36: hexagonal (Mg, Al)2Ca Laves phase, C14: hexagonal Mg2Ca Laves phase)
[1] Liu Z, Wang Z G, Wang Y, et al.Application and developing tendency of magnesium die casting alloys in automobile industry[J]. Spec. Cast. Nonferrous Alloys, 2002, 22(S1): 300
[1] (刘正, 王中光, 王越等. 压铸镁合金在汽车工业中的应用和发展趋势[J]. 特种铸造及有色合金, 2002, 22(S1): 300)
[2] Lou Y, Bai X, Li L X.Effect of Sr addition on microstructure of as-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1247
[3] Suzuki A, Saddock N D, Jones J W, et al.Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary alloys[J]. Acta Mater., 2005, 53: 2823
[4] Zhang J, Feng Y C, Wang Q, et al.Effects of different Ca and Nd addition on corrosion resistance of Mg-6Al alloys[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 430
[4] (张靖, 冯义成, 王琴等. 不同Ca和Nd含量对Mg-6Al合金腐蚀性能的影响[J]. 特种铸造及有色合金, 2015, 35: 430)
[5] Bai J, Sun Y S, Xue F, et al.Microstructures and creep properties of Mg-6Al-(Sr, Ca) alloys[J]. Acta Metall. Sin., 2006, 42: 1267
[5] (白晶, 孙扬善, 薛烽等. Mg-6Al-(Sr, Ca)合金的显微组织和蠕变性能[J]. 金属学报, 2006, 42: 1267)
[6] Li H Y, Bai Y Y, Zhang H T, et al.Effect of Mn on hot cracking tendency of Mg-6.5Zn alloys[J]. Acta Metall. Sin., 2014, 50: 1237
[6] (李浩宇, 柏媛媛, 张海涛等. Mn对Mg-6.5Zn合金热裂倾向性的影响[J]. 金属学报, 2014, 50: 1237)
[7] Liang W Z, Ji Z S, Zuo F, et al.Present research status and developing tendency of heat resistance Mg alloy[J]. Spec. Cast. Nonferrous Alloys, 2003, 23(2): 39
[7] (梁维中, 吉泽升, 左锋等. 耐热镁合金的研究现状及发展趋势[J]. 特种铸造及有色合金, 2003, 23(2): 39)
[8] Luo A H, Sachdev A K, Powell B R.Advanced casting technologies for lightweight automotive applications[J]. Foundry, 2011, 60: 113
[8] (罗爱华, Sachdev A K, Powell B R.汽车轻量化先进铸造技术[J]. 铸造, 2011, 60: 113)
[9] Cao G, Kou S.Hot tearing of ternary Mg-Al-Ca alloy castings[J]. Metall. Mater. Trans., 2006, 37A: 3647
[10] Cao G, Kou S.Hot cracking of binary Mg-Al alloy castings[J]. Mater. Sci. Eng., 2006, A417: 230
[11] Qiu K Q, Tao S R, Re Y, et al.Effect of Ca on the hot tearing susceptibility of Mg-7Al-2Si casting alloys[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 186
[11] (邱克强, 陶思伟, 热焱等. Ca对Mg-7Al-2Si合金热裂倾向的影响[J]. 特种铸造及有色合金, 2013, 33: 186)
[12] Huang H, Fu P H, Peng L M, et al.Effect of mould temperature and pouring temperature on the hot tearing and fluidity of AZ91D magnesium alloy[J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 81
[12] (黄皓, 付彭怀, 彭立明等. 模具温度和浇注温度对AZ91D镁合金热裂和流动性能的影响[J]. 特种铸造及有色合金, 2012, 32: 81)
[13] Suzuki A, Saddock N D, Jones J W, et al.Phase equilibria in the Mg-Al-Ca ternary system at 773 and 673 K[J]. Metall. Mater. Trans., 2006, 37A: 975
[14] Clyne T W, Wolf M, Kurz W.The effect of melt composition on solidification cracking of steel, with particular reference to continuous casting[J]. Metall. Trans., 1982, 13B: 259
[15] Clyne T W, Davies G J.The influence of composition on solidification cracking susceptibility in binary alloy systems[J]. Brit. Found., 1981, 74: 65
[16] Hou D H, Liang S M, Chen R S, et al.Solidification behavior and grain size of sand casting Mg-6Al-xZn alloys[J]. Acta Metall. Sin., 2015, 50: 601
[16] (侯丹辉, 梁松茂, 陈荣石等. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸[J]. 金属学报, 2015, 50: 601)
[17] Xu S W, Matsumoto N, Yamamoto K, et al.High temperature tensile properties of as-cast Mg-Al-Ca alloys[J]. Mater. Sci. Eng., 2009, A509: 105
[18] Yang G Y, Hao Q T, Jie W Q, et al.Effect of Ca addition on the microstructure and mechanical properties of Mg-5Al-0.4Zn casting alloy[J]. Acta Metall. Sin., 2005, 41: 933
[18] (杨光昱, 郝启堂, 介万奇等. Ca加入量对Mg-5Al-0.4Zn基铸造合金组织与力学性能的影响[J]. 金属学报, 2005, 41: 933)
[19] TerBush J R, Chen O H, Jones J W, et al. The dependence of creep behavior on elemental partitioning in Mg-5Al-3Ca-xSn alloys[J]. Metall. Mater. Trans., 2012, 43A: 3120
[20] Liang S M, Zhang H W, Xia M X, et al.Microstructure and mechanical properties of melt-conditioned high-pressure die-cast Mg-Al-Ca alloy[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1205
[21] Liu Z, Zhang S B, Mao P L, et al.Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 907
[22] Zhang D T, Suzuki M, Maruyama K.Study on the texture of a friction stir welded Mg-Al-Ca alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2006, 19: 335
[23] Wang S Y, Wang Q D, Ding W J, et al.Research development of hot tear mechanism for cast alloys[J]. Spec. Cast. Nonferrous Alloys, 2000, 20(2): 48
[23] (王业双, 王渠东, 丁文江等. 合金的热裂机理及其研究进展[J]. 特种铸造及有色合金, 2000, 20(2): 48)
[24] Ding H, Fu H Z, Liu Z Y, et al.Compensation of solidification contraction and hot cracking tendency of alloys[J]. Acta Metall. Sin., 1997, 33: 921
[24] (丁浩, 傅恒志, 刘忠元等. 凝固收缩补偿与合金的热裂倾向[J]. 金属学报, 1997, 33: 921)
[25] Zhang Z M, Lü T, Xu C J, et al.Microstructure of binary Mg-Al eutectic alloy wires produced by the Ohno continuous casting process[J]. Acta Metall. Sin.(Engl. Lett.), 2008, 21: 275
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!