Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1115-1122    DOI: 10.11900/0412.1961.2016.00048
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS
Feng WANG(),Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Download:  HTML  PDF(1343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the lightest metallic structural material, magnesium alloys were widely used in automotive, aerospace, electronic equipment and other fields. Among commercial magnesium alloys, AM series were commonly used due to excellent ductility and energy absorption. However, their relatively poor strength greatly restricted their extended use. In order to improve mechanical properties of AM50 alloy, the Zn and Y elements were added into the AM50 alloy in the form of atomic ratio of 6∶1 by the permanent mold casting. The microstructure, solidification behavior and mechanical properties of AM50-x(Zn, Y) (x=0, 2, 3, 4, 5, mass fraction, %) alloys were investigated by OM, SEM, EDS, XRD, thermal analysis and tensile tests. The results indicated that addition of Zn and Y elements with an atomic ratio of 6∶1 to AM50 alloy, the microstructures were obviously refined, and the quasicrystal I-phase(Mg3Zn6Y) cannot form. In addition, the granular Al6YMn6 phase and fine Al2Y phase were formed in the microstructure, and the size of Al6YMn6 phase increased with increasing the Zn and Y content. The Φ-Mg21(Zn, Al)17 phase with lamellar structure was formed around β phase when x≥3, and its amount increased with increasing the Zn and Y addition. Thermal analysis results show that the Φ-Mg21(Zn, Al)17 phase was formed at 354 ℃ by the peritectic reaction, in which the precipitation temperatures of α-Mg and β phase were decreased with the increase of x content. Due to the formation of Al6YMn6, Al2Y and Φ-Mg21(Zn, Al)17 phases, the size and amount of the β phase was decreased. For AM50-4(Zn, Y) alloy, the microstructure was greatly refined, and the ultimate tensile strength, yield strength and elongation of the alloy reached to the maximum, 206.63 MPa, 92.50 MPa and 10.04%, respectively.

Key words:  magnesium alloy      AM50      microstructure      thermal analysis      mechanical property     
Received:  29 January 2016     
Fund: Supported by National Natural Science Foundation of China (No.51504153), Natural Science Foundation of Liaoning Province (No.201602548) and Program for Liaoning Innovative Research Team in University (No.LT2013004)

Cite this article: 

Feng WANG,Dezhi MA,Zhi WANG,Pingli MAO,Zheng LIU. MICROSTRUCTURE, MECHANICAL PROPERTIES AND SOLIDIFICATION BEHAVIOR OF AM50-x(Zn, Y) MAGNESIUM ALLOYS. Acta Metall Sin, 2016, 52(9): 1115-1122.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00048     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1115

Alloy Al Mn Zn Y Mg
AM50-0(Zn, Y) 5.05 0.28 0.18 - Bal.
AM50-2(Zn, Y) 5.09 0.27 1.71 0.32 Bal.
AM50-3(Zn, Y) 4.95 0.26 2.53 0.52 Bal.
AM50-4(Zn, Y) 4.98 0.28 3.36 0.73 Bal.
AM50-5(Zn, Y) 4.92 0.29 4.23 0.90 Bal.
Table1  Chemical compositions of the alloys (mass fraction / %)
Fig.1  Microstructures of as-cast AM50-x(Zn, Y) alloys
(a) x=0 (b) x=2 (c) x=3 (d) x=4 (e) x=5
Fig.2  SEM images (a~e) and XRD spectra (f) of as-cast AM50-x(Zn, Y) alloys with x=0 (a), x=2 (b), x=3 (c), x=4 (d) and x=5 (e)
Fig.3  SEM image of as-cast AM50 alloy (a), and EDS analyses of β-Mg17Al12 (b) and Al8Mn5 (c)
Fig.4  SEM images of as-cast AM50-4(Zn, Y) alloy (a, b), and EDS analyses of β-Mg17(Zn, Al)12 (c), Φ-Mg21(Zn, Al)17 (d) and Al6YMn6 (e)
Fig.5  SEM image of as-cast AM50-4(Zn, Y) alloy (a), and area scan maps of elements Mg (b), Al (c), Zn (d), Y (e) and Mn (f)
Fig.6  Thermal analysis results of as-cast AM50-x(Zn, Y) alloys (T—temperature, t—time)
(a) x=0 (b) x=2 (c) x=3 (d) x=4 (e) x=5
Fig.2  Critical temperatures obtained from the thermal analysis curves (Fig.6)
Fig.7  Tensile properties of as-cast AM50-x(Zn, Y) alloys at room temperature (σb—ultimate tensile strength, σ0.2—yield strength, δ—Elongation)
[1] Agnew S R, Nie J F.Scr Mater, 2010; 63: 671
[2] Easton M, Beer A, Barnett M, Davies C, Dunlop G, Durandet Y, Blacket S, Hilditch T, Beggs P.JOM, 2008; 60(11): 57
[3] Fechner D, Hort N, Blawert C, Dieringa H, St?rmer M, Kainer K U. J Mater Sci, 2012; 47: 5461
[4] Kondori B, Mahmudi R.Mater Sci Eng, 2010; A527: 2014
[5] ünal M.Int J Cast Met Res, 2014; 27(2): 80
[6] Wang Q D, Lin J B, Liu M P, Ding W J.Int J Mater Res, 2008; 99: 761
[7] Wang J L, Yang J, Wu Y M, Zhang H J, Wang L M.Mater Sci Eng, 2008; A472: 332
[8] Singh L K, Srinivasan A, Pillai U T S, Joseph M A, Pai B C.Trans Ind Inst Met, 2015; 68: 331
[9] Kim J M, Park B K, Jun J H, Shin K, Kim K T, Jung W J. Mater Sci Eng, 2007; A449-451: 326
[10] Zhang J S, Pei L X, Du H W, Liang W, Xu C X, Lu B F.J Alloys Compd, 2008; 453: 309
[11] Bae D H, Lee M H, Kim K T, Kim W T, Kim D H.J Alloys Compd, 2002; 342: 445
[12] Zhang J S, Zhang Y Q, Zhang Y, Xu C X, Wang X M, Yan J.Trans Nonferrous Met Soc China, 2010; 20: 1199
[13] Teng X Y, Liu T, Zhou G R, Liu L Y. Adv Mater Res, 2011; 306-307: 582
[14] Wang X D, Du W B, Wang Z H, Liu K, Li S B.Mater Sci Eng, 2011; A530: 446
[15] Wang R M, Eliezer A, Gutman E M.Mater Sci Eng, 2003; A355: 201
[16] Zhang Z, Couture A, Luo A.Scr Mater, 1998; 39: 45
[17] Ohno M, Mirkovic D, Schmid-Fetzer R.Mater Sci Eng, 2006; A421: 328
[18] Wang J L, Peng Q M, Wu Y M, Wang L M.Trans Nonferrous Met Soc China, 2006; 16(s1): 703
[19] Zheng W C, Li S S, Tang B, Zeng D B.Acta Metall Sin, 2006; 42: 835
[19] (郑伟超, 李双寿, 汤彬, 曾大本. 金属学报, 2006; 42: 835)
[20] Pettersen G, Westengen H, H?ier R, Lohne O.Mater Sci Eng, 1996; A207: 115
[21] Wu G H, Fan Y, Zhai C Q, Ding W J.Acta Metall Sin, 2008; 44: 1247
[21] (吴国华, 樊昱, 翟春泉, 丁文江. 金属学报, 2008; 44: 1247)
[22] Wang J, Zhu X R, Xu Y D, Wang R, Nie J J, Zhang L J.Chin J Nonferrous Met, 2014; 24: 25
[22] (王军, 朱秀荣, 徐永东, 王荣, 聂景江, 张立君. 中国有色金属学报, 2014; 24: 25)
[23] Ohno M, Mirkovic D, Schmid-Fetzer R.Acta Mater, 2006; 54: 3883
[24] Wang Y S, Wang Q D, Ma C J, Ding W J, Zhu Y P.Mater Sci Eng, 2003; A342: 178
[25] Lü Y Z, Wang Q D, Ding W J, Zeng X Q, Zhu Y P.Mater Lett, 2000; 44(5): 265
[26] Maxwell I, Hellawell A.Acta Metall, 1975; 23: 229
[27] Becerra A, Pekguleryuz M.J Mater Res, 2009; 24: 1722
[28] Hou D H, Liang S M, Chen R S, Dong C.Acta Metall Sin, 2014; 50: 601
[28] (侯丹辉, 梁松茂, 陈荣石, 董闯. 金属学报, 2014; 50: 601)
[29] Zhao Z D, Chen Q, Wang Y B, Shu D Y. Mater Sci Eng, 2009; A515: 152
[30] Yuan W, Panigrahi S K, Su J Q, Mishra R S.Scr Mater, 2011; 65: 994
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[6] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[7] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[8] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[9] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
No Suggested Reading articles found!