Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (4): 473-483    DOI: 10.11900/0412.1961.2015.00406
Orginal Article Current Issue | Archive | Adv Search |
GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING
Jixiang CHEN1,Weiguo WANG1,2(),Yan LIN2,Chen LIN2,Qianting WANG1,2,Pinqiang DAI1,2
1 School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
2 School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
Cite this article: 

Jixiang CHEN,Weiguo WANG,Yan LIN,Chen LIN,Qianting WANG,Pinqiang DAI. GRAIN BOUNDARY PLANE DISTRIBUTIONS IN RECRYSTALLIZED HIGH PURITY Al AFTER A PARALLEL PROCESSING OF EQUAL CHANNEL ANGULAR PRESSING AND DIRECT ROLLING. Acta Metall Sin, 2016, 52(4): 473-483.

Download:  HTML  PDF(1849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is quite different from those low to medium stacking fault energy face-centered cubic metals, Al and most its alloys are not applicable to twin-induced grain boundary engineering processing due to their high stacking fault energy. In order to optimize the grain boundary character distribution so as to remarkably better the properties of Al and its alloys, it is necessary at first to study the grain boundary plane distributions. In this work, two parallel high purity (99.99%) Al specimens, which were prepared by multi-directional forging followed by recrystallization annealing resulting in a homogeneous microstructure with averaged grain size around 20 μm, were separately processed by equal channel angular pressing (ECAP) and direct rolling (DR) with true strain ε≈2 followed by a recrystallization annealing at 360 ℃ for 8~90 min. Then, the grain boundary plane distributions were characterized by five-parameter analysis (FPA) based on stereology method and electron backscatter diffraction (EBSD). The results show that the grain boundary planes of the specimens as processed mainly orient on {111}, mostly corresponding to the <111> twist high angle boundaries. It is due to the energy minimum of {111}. The primary difference of grain boundary plane distributions between ECAP and DR specimens lies in the behaviors of grain boundary planes orienting onto {111}. For ECAP specimens, it is slow the grain boundary planes orienting onto {111}. However, for DR specimens, it is quite easy the grain boundary planes orienting onto {111}. Discussions pointed out, compared with ECAP deformation, DR deformation is more efficient for grain boundary plane orienting onto {111} in the subsequent recrystallization annealing and thus is more in favor of the optimization of grain boundary character distribution. It could be attributed to the development of <110>//ND textures during DR deformation which results in the fast grain growth in the subsequent recrystallization annealing.

Key words:  high purity Al      equal channel angular pressing      direct rolling      recrystallization      grain boundary plane distribution     
Received:  22 July 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51171095 and 51271058)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00406     OR     https://www.ams.org.cn/EN/Y2016/V52/I4/473

Fig.1  Orientation image microscopy (OIM) of high purity Al before equal channel angular pressing (ECAP) and direct rolling (DR)
Fig.2  Schematic of ECAP (ND—normal direction, ED—extruded direction, TD—transverse direction)
Fig.3  OIMs (a, c) and band contrast (BC) map (b) of high purity Al annealed at 360 ℃ for 8 min (a, b) and 90 min (c) after ECAP
Fig.4  OIMs (a, c) and BC map (b) of high purity Al annealed at 360 ℃ for 8 min (a, b) and 90 min (c) after DR
Fig.5  XRD spectra of high purity Al after ECAP and DR
Fig.6  Curves of grain size vs annealing time for ECAP and DR high purity Al during annealing at 360 ℃
Fig.7  Orientation distribution function (ODF) sections of high purity Al annealed at 360 ℃ for 8 min (a, c) and 90 min (b, d) after ECAP (a, b) and DR (c, d) (?1, Φ and ?2 are the three Euler angles presenting crystallographic orientation in the specimen reference frame)
Fig.8  Misorientation distributions of high purity Al annealed at 360 ℃ for 8 min (a, c) and 90 min (b, d) after ECAP (a, b) and DR (c, d)
Fig.9  Grain boundary plane distributions of high purity Al annealed at 360 ℃ for 8 min (a, c) and 90 min (b, d) after ECAP (a, b) and DR (c, d) (Plotted in stereographic projection along [001]. The spreading of intensity away from the ideal <111> position is shown by the red circles. MRD—multiple of random distribution)
Fig.10  Grain boundary plane distributions for [111]/50° mis-oriented high angle grain boundaries of high purity Al annealed at 360 ℃ for 8 min (a, c) and 90 min (b, d) after ECAP (a, b) and DR (c, d)
Fig.11  Grain boundary plane distributions for [111]/10° mis-oriented low angle grain boundaries of high purity Al annealed at 360 ℃ for 8 min (a, c) and 90 min (b, d) after ECAP (a, b) and DR (c, d)
Fig.12  CSL grain boundary distributions of high purity Al annealed at 360 ℃ for 8 and 90 min after ECAP (a) and DR (b)
Fig.13  CSL grain boundary plane distributions of high purity Al annealed at 360 ℃ for 8 min (a~c) and 90 min (d~f) after ECAP
Fig.14  CSL grain boundary plane distributions of high purity Al annealed at 360 ℃ for 8 min (a~c) and 90 min (d~f) after DR
[1] Watanabe T.Res Mech, 1984; 11: 47
[2] Kronberg M L,Wilson F H.Trans AIME, 1949; 185: 501
[3] Aust K T, Erb U, Palumbo G.Mater Sci Eng, 1994; A176: 329
[4] Chadwick G A, Smith D A.Grain Boundary Structure and Properties. London: Academic Press, 1976: 201
[5] Randle V.Scr Mater, 2006; 54: 1011
[6] Palumbo G, Erb U.MRS Bull, 1999; 24: 27
[7] Xia S, Zhou B X, Chen J W, Wang W G.Acta Metall Sin, 2006; 42: 129
[7] (夏爽, 周邦新, 陈觉文, 王卫国. 金属学报, 2006; 42: 129)
[8] Wang W G, Zhou B X, Feng L.Acta Metall Sin, 2006; 42: 715
[8] (王卫国, 周邦新, 冯柳. 金属学报, 2006; 42: 715)
[9] Wang W G, Zhou B X, Rohrer G S, Guo H, Cai Z X.Mater Sci Eng, 2010; A527: 3695
[10] Kumar M, Schwartz A J, King W E.Acta Mater, 2002; 50: 2599
[11] Thaveeprungsriporn V, Sinsrok P, Hong-Aram D.Scr Mater, 2001; 44: 67
[12] Shimada M, Kokawa H, Wang Z J, Sato Y S, Karibe I.Acta Mater, 2002; 50: 2331
[13] Fang X Y, Wang W G, Zhou B X.Acta Metall Sin, 2010; 46: 404
[13] (方晓英, 王卫国, 周邦新. 金属学报, 2010; 46: 404)
[14] Fang X Y, Liu Z Y, Tikhonova M, Belyakov A, Kaibyshev R, Rohrer G S, Wang W G.Acta Metall Sin, 2012; 48: 895
[14] (方晓英, 刘志勇, Tikhonova M, Belyakov A, Kaibyshev R, Rohrer G S, 王卫国. 金属学报, 2012; 48: 895)
[15] Fang X Y, Wang W G, Zhou B X.Rare Met Mater Eng, 2007; 36:1500
[15] (方晓英, 王卫国, 周邦新. 稀有金属材料与工程, 2007; 36: 1500)
[16] McNaughtan D, Worsfold M, Robinson M J.Corros Sci, 2003; 45: 2377
[17] Li X L, Chen J H, Liu C H, Feng J N, Wang S H.Acta Metall Sin, 2013; 49: 243
[17] (李祥亮, 陈江华, 刘春辉, 冯佳妮, 王时豪. 金属学报, 2013; 49: 243)
[18] Zhang H F, Zheng Z Q, Zhong S, Luo X F, Zhong J.Trans Nonferrous Met Soc China, 2012; 22: 1025
[18] (张海锋, 郑子樵, 钟申, 罗先甫, 钟警. 中国有色金属学报, 2012; 22: 1025)
[19] Saylor D M, Dasher B E, Rollett A D, Rohrer G S.Acta Mater, 2004; 52: 3649
[20] Dong L, Wang W G.Acta Phys Sin, 2013; 15: 42
[20] (董垒, 王卫国. 物理学报, 2013; 15: 42)
[21] Wang W G, Lin C, Li G H, Hua N B, Zhou B X, Fang X Y, Dai P Q, Chen W Z.Sci China, 2014; 44E: 1295
[21] (王卫国, 林琛, 李广慧, 花能斌, 周邦新, 方晓英, 戴品强, 陈文哲. 中国科学, 2014; 44E: 1295)
[22] Segal V M.Mater Sci Eng, 1995; A197: 157
[23] Beladi H, Rohrer G S.Metall Mater Trans, 2013; 44A: 115
[24] Yu Y N, Liu G Q.Stereologic: Principles and Applications of Quantitative Analysis of Tissue. Beijing: Metallurgical Industry Press, 1989: 123
[24] (余永宁, 刘国权. 体视学:组织定量分析的原理和应用. 北京: 冶金工业出版社, 1989: 123)
[25] Rohrer G S, Saylor D M, Dasher B E, Adams B L, Rollett A D, Wynblatt P.Z Metallkd, 2004; 95: 197
[26] Engler O, Huh M.Mater Sci Eng,1999; A271: 371
[27] MacKenzie J K.Biometrika, 1958; 45: 229
[28] Li J, Dillon S J, Rohrer G S.Acta Mater, 2009; 57: 4304
[29] Beladi H, Nuhfer N T, Rohrer G S.Acta Mater, 2014; 70: 281
[30] Wen Y N, Zhang J M.Solid State Commun, 2007; 144: 163
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[7] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[10] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[11] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[12] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[14] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[15] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
No Suggested Reading articles found!