Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1545-1552    DOI: 10.11900/0412.1961.2015.00254
Current Issue | Archive | Adv Search |
CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM
Boyang WANG1,Bangxin ZHOU1,2(),Zhen WANG1,Jiao HUANG1,Meiyi YAO1,2,Jun ZHOU3
1 Institute of Materials, Shanghai University, Shanghai 200072
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444
3 Western Energy Material Technologies Co. Ltd., Xi'an 710016
Cite this article: 

Boyang WANG,Bangxin ZHOU,Zhen WANG,Jiao HUANG,Meiyi YAO,Jun ZHOU. CORROSION RESISTANCE OF Zr-0.72Sn-0.32Fe- 0.14Cr-xNb ALLOYS IN 500 ℃ SUPERHEATED STEAM. Acta Metall Sin, 2015, 51(12): 1545-1552.

Download:  HTML  PDF(902KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys with low alloying content are mainly used in the nuclear industry as structural materials because of their superior properties in terms of thermal neutron transparency, mechanical strength and corrosion resistance. They are used for fuel cladding tubes and channels. The reaction between zirconium and water at high temperature forms oxide film on the surfaces. In order to further improve the corrosion resistance of Zr-based cladding tubes, research has continued on developing new zirconium alloys. The corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys (x=0, 0.12, 0.28, 0.48, 0.97, mass fraction, %) was investigated in a superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. All the plate specimens of zirconium alloys with thickness of 2.8 mm have a similar texture. The microstructure of alloys and oxide films on the corroded specimens were observed by TEM and SEM. The results showed that no nodular corrosion appeared on these alloys for 500 h exposure. The thickness of oxide layers developed on the rolling surface (SN), the surface perpendicular to the rolling direction (SR) and the surface perpendicular to the transversal direction (ST) after 500 h exposure was close to each other. There was no anisotropic corrosion resistance for these alloys. The corrosion rate of the alloys increased with the increase of Nb content after 250 h exposure when the Nb content exceeded 0.28%. In the alloy with low Nb content, the fcc-Zr(Fe, Cr)2 or fcc-Zr(Fe, Cr, Nb)2 precipitate was mainly formed, while the hcp-Zr(Fe, Cr, Nb)2 precipitate was frequently observed in the alloy with high Nb content. The corrosion resistance of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys was improved by decreasing the Nb/Fe ratio. From a point of view for the improving corrosion resistance, the addition of Nb no more than 0.3% is recommended.

Key words:  zirconium alloy      Nb      second phase      corrosion resistance     
Fund: Supported by National Natural Science Foundation of China (No.51471102)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00254     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1545

Fig.1  (0001) pole figure (a), inverse pole figures of the normal direction (ND) to rolling surface (b), transversal direction (TD) (c) and rolling direction (RD) (d) of 0.97Nb alloy annealed at 580 ℃ for 5 h
Specimen fN fR fT
0Nb 0.765 0.059 0.176
0.12Nb 0.658 0.078 0.264
0.28Nb 0.703 0.083 0.213
0.48Nb 0.727 0.053 0.220
0.97Nb 0.701 0.061 0.238
Table 1  Texture factors fN, fR and fT in ND, RD and TD for Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys
Fig.2  TEM images of 0Nb (a), 0.12Nb (b) and 0.97Nb (c) alloys
Fig.3  TEM images and SAED patterns (insets) of second phase particles 1~3 in 0Nb (a), 0.12Nb (b) and 0.97Nb (c) alloys
Fig.4  Mass gain curves of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys corroded in 500 ℃, 10.3 MPa superheated steam for different times
Fig.5  Variation of average corrosion rate of Zr-0.72Sn-0.32Fe-0.14Cr-xNb alloys with Nb contents after corrosion for 250~500 h
Fig.6  Fracture surface morphologies of oxide films formed on SN surface (rolling surface) after exposed in 500 ℃, 10.3 MPa superheated steam for 500 h for 0Nb (a), 0.28Nb (b) and 0.97Nb (c) alloys
Fig.7  Oxide thickness on rolling surface (SN), surface perpendicular to rolling direction (SR) and surface perpendicular to transversal direction (ST) as a function of exposure time for 0Nb (a), 0.12Nb (b), 0.28Nb (c), 0.48Nb (d) and 0.97Nb (e) alloys corroded in 500 ℃, 10.3 MPa superheated steam
[1] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. Atom Energy Sci Technol, 2005; 39(suppl): 1
[1] (赵文金, 周邦新, 苗 志, 彭 倩, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学技术, 2005; 39(增刊): 1)
[2] Cox B. J Nucl Mater, 2005; 336: 331
[3] Sabol G P. In: Rudling P, Kammenzind B eds., Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, Stockholm: ASTM, 2004: 3
[4] Sabol G P, Comstock R J, Weiner R A. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Baltimore, MD: ASTM, 1994: 724
[5] Nikulina A V, Markelov V A, Peregud M M. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, Garmisch-Partenkirchen, Germany: ASTM, 1996: 785
[6] Zhao W J. Rare Met Lett, 2004; 23(5): 15
[6] (赵文金. 稀有金属快报, 2004; 23(5): 15)
[7] Zhou B X. J Met Heat Treat, 1997; 18(3): 8
[7] (周邦新. 金属热处理学报, 1997; 18(3): 8)
[8] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X. Atom Energy Sci Technol, 2010; 44: 1477
[8] (刘文庆, 朱晓勇, 王晓姣, 李 强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)
[9] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q. Shanghai Met, 2008; 30(6): 1
[9] (姚美意, 周邦新,李 强, 夏 爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[10] Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X. J Chin Soc Corros Prot, 2002; 22: 124
[10] (赵文金, 苗 志, 蒋宏曼, 于晓卫, 李卫军, 李 聪, 周邦新. 中国腐蚀与防护学报, 2002; 22: 124)
[11] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limb?ck M, Barbéris P eds., Zirconium in the Nuclear Industry: Sixteenth International Symposium, ASTM STP 1529, Bridgeport: ASTM, 2011: 620
[12] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q. Acta Metall Sin, 2012; 48: 1103
[12] (孙国成, 周邦新, 姚美意, 谢世敬, 李 强. 金属学报, 2012; 48: 1103)
[13] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865
[13] (姚美意, 李士炉, 张 欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)
[14] Toffolon C, Brachet J C, Servant C, Legras L, Charquet D, Barberis P, Mardon J P. In: Moan G D, Rudling P eds., Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, West Conshohochen: ASTM, 2002: 361
[15] Takeda K, Anada H. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohochen: ASTM, 2000: 592
[16] Broy Y, Garzarolli F, Seibold A, van Swam L F. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohochen: ASTM, 2000: 609
[17] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. J ASTM Int, 2008; 5: 360
[18] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364
[18] (周邦新, 李 强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)
[19] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 339
[19] (周邦新, 李 强, 黄 强, 苗 志, 赵文金, 李 聪. 核动力工程, 2000; 21: 339)
[20] Liu W Q, Li Q, Zhou B X, Yan Q S, Yao M Y. Nucl Power Eng, 2005; 26: 249
[20] (刘文庆, 李 强, 周邦新, 严青松, 姚美意. 核动力工程, 2005; 26: 249)
[21] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009
[21] (周邦新, 李 强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)
[22] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1129
[22] (周邦新, 李 强, 姚美意, 夏 爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1129)
[23] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317
[23] (周邦新, 姚美意, 李 强, 夏 爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[24] Sun G C. Master Thesis, Shanghai University, 2012
[24] (孙国成. 上海大学硕士学位论文, 2012)
[25] Woo O T, Griffiths M. J Nucl Mater, 2009; 384: 77
[26] Kim H G, Park J Y, Jeong Y H. J Nucl Mater, 2005; 345: 1
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[10] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[11] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[12] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[13] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[14] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[15] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
No Suggested Reading articles found!