Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1538-1544    DOI: 10.11900/0412.1961.2015.00255
Current Issue | Archive | Adv Search |
MECHANISM OF B IN HYDROGEN-RESISTANCE J75 ALLOY
Hao LIANG1,Mingjiu ZHAO2(),Shenghu CHEN2,Yong XU1,Yongli WANG2,Lijian RONG2
1 Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900
2 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Hao LIANG,Mingjiu ZHAO,Shenghu CHEN,Yong XU,Yongli WANG,Lijian RONG. MECHANISM OF B IN HYDROGEN-RESISTANCE J75 ALLOY. Acta Metall Sin, 2015, 51(12): 1538-1544.

Download:  HTML  PDF(1459KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of hydrogen economy, the demand of structural materials with high strength suitable for service in hydrogen or hydrogen-bearing environments such as storage of hydrogen gas was incremental. An optional structural materials is J75 alloy, which is mainly strengthened by an ordered fcc γ' phase, Ni3(Al, Ti), coherent with the austenite matrix. Investigation on J75 alloy indicated that the commercial alloy free of B would lose about half its ductility when charged with hydrogen, accompanied by a change of fracture mode from ductile rupture to brittle-appearing intergranular fracture. Otherwise, an improvement in ductility and hydrogen resistant performance was observed in the J75 alloy with trace B, however, its role in the alloy is unclear. So, in present work, mechanism of B in the J75 hydrogen-resistant alloy was investigated by means of OM, SEM, TEM, EPMA, 3DAP, SIMS, hydrogen penetration, thermal hydrogen charging experiments and tensile tests. It was found that a lot of Ti segregated at grain boundaries (GBs) in the alloy free of B, resulted in abundant precipitation of cellular η phases. However, the cellular η phase was not observed in the alloy with B, and it could be attributed to the segregation of B atoms at GBs and inhibited the segregation of Ti. A lower hydrogen diffusion coefficient was observed in the alloy with B than that in the alloy free of B by hydrogen permeation, indicating that diffusion velocity of H atoms in the alloy had been decreased by the addition of B. Moreover, segregation of B at GBs could not only inhibit the precipitation of η phases but also decrease the number of H atoms there, which would improve the hydrogen-resistant performance of the alloy.

Key words:  J75 alloy      B      hydrogen-resistant performance      η phase     
Fund: Supported by National Natural Science Foundation of China and China Academy of Engineering Physics (No.U1230118) and National Natural Science Foundation of China (No.51171178)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00255     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1538

Alloy C Ni Cr Si Mo Ti Al P S B Fe
0B 0.012 29.8 15.08 0.26 1.34 2.31 0.33 0.002 0.003 Bal.
20B 0.011 30.1 14.93 0.24 1.33 2.04 0.28 0.002 0.003 0.0019 Bal.
Table 1  Chemical compositions of Fe-Ni base austenite J75 alloys with and without B (mass fraction / %)
Fig.1  OM image of 0B alloy (a), bright-field TEM (b) and HRTEM (c) images of cellular η phase at grain boundaries (GBs)
Fig.2  OM image of 20B alloy (a), TEM bright-field image (b) and SAED pattern (c) of carbide at GBs
Fig.3  Tensile fracture morphologies of 0B (a, c) and 20B (b, d) alloys before (a, b) and after (c, d) hydrogen charging
Alloy sb / MPa s0.2 / MPa d / % y / %
0B 1142 742 26.0 40.0
20B 1136 739 28.4 64.5
Table 2  Room temperature tensile properties of 0B and 20B alloys
Fig.4  SEM image of η phases and γ′ precipitates in 0B alloy
Alloy sb / MPa s0.2 / MPa d / % yH / % yL / %
0B 1134 757 20.4 20.6 48.3
20B 1158 785 24.0 41.5 35.7
Table 3  Room temperature tensile properties and hydrogen-induced ductility loss of 0B and 20B alloys after hydrogen charging
Fig.5  Microstructures (a, b) and EPMA analysis of Fe (a1, b1) and Ti (a2, b2) in 0B (a~a2) and 20B (b~b2) alloys (I—intensity)
Fig.6  SIMS image of B distribution in 20B alloy
Fig.7  3DAP images of H (a) and B (b) atom distributions after hydrogen charging in 20B alloy (The box size is 8.6 nm×9.4 nm×237 nm)
[1] Li X Y,Li Y Y. Hydrogen Damage of Austenitic Alloy. Beijing: Science Press, 2003: 1
[1] (李秀艳,李依依. 奥氏体合金的氢损伤. 北京: 科学出版社, 2003: 1)
[2] Zhang J, Li X Y, Zhao M J, Rong L J. Acta Metall Sin, 2008; 44: 1095
[2] (张 建, 李秀艳, 赵明久, 戎利建. 金属学报, 2008; 44: 1095)
[3] Li X Y, Rong L J, Li Y Y. Acta Metall Sin, 2005; 41: 1155
[3] (李秀艳, 戎利建, 李依依. 金属学报, 2005; 41: 1155)
[4] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547
[5] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469
[5] (张 建, 李秀艳, 戎利建, 郑永男, 朱升云. 金属学报, 2006; 42: 469)
[6] Chen S H, Zhao M J, Rong L J. Acta Metall Sin, 2012; 48: 1335
[6] (陈胜虎, 赵明久, 戎利建. 金属学报, 2012; 48: 1335)
[7] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983
[8] Zhao M J, Rong L J. Acta Metall Sin, 2009; 45: 119
[8] (赵明久, 戎利建. 金属学报, 2009; 45: 119)
[9] Zhao M J, Guo Z F, Liang H, Rong L J. Mater Sci Eng, 2010; A527: 5844
[10] Yao X X. Mater Sci Eng, 1999; A271: 353
[11] Sourmail T, Okuda T, Taylor J E. Scr Mater, 2004; 50: 1271
[12] Fujwara M, Uchida H, Ohta S. J Mater Sci Lett, 1994; 13: 557
[13] Kennedy R L, Cao W D, Thomas W M. Adv Mater Process, 1996; 149: 33
[14] Sellamuthu R, Giamei A F. Metall Trans, 1986; 17A: 419
[15] Wills V A, Mccartney D G. Mater Sci Eng, 1991; A145: 223
[16] Franzoni U, Marchetti F, Sturless S. Scr Metall, 1985; 19: 511
[17] Shulga A V. J Alloys Compd, 2007; 486: 155
[18] Liu W Q, Liu Q D, Li C, Fang S F, Zhou B X. J Jiangsu Univ (Nat Sci Ed), 2008; 29: 131
[18] (刘文庆, 刘庆冬, 李 聪, 方淑芳, 周邦新. 江苏大学学报(自然科学版), 2008; 29: 131)
[19] Guo J T. Material Science and Engineering for Superalloys. Beijing: Science Press, 2008: 123
[19] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 123)
[20] Ducki K J, Hetmanczyk M, Kuc D. Mater Chem Phys, 2003; 81: 490
[21] Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85
[22] Zhao J C, Ravikumar V. Metall Mater Trans, 2001; 32A: 1271
[23] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[24] Wu P, He X L. Acta Metall Sin, 1999; 35: 1009
[24] (吴 平, 贺信莱. 金属学报, 1999; 35: 1009)
[25] Aust K, Hanneman R, Niessen P, Westbrook J. Acta Metall, 1968; 16: 291
[26] Li X Y, Zhang J, Rong L J, Li Y Y. J Mater Sci Eng, 2005; 23: 483
[26] (李秀艳, 张 建, 戎利建, 李依依. 材料科学与工程学报, 2005; 23: 483)
[27] Wu Y X, Li X Y, Wang Y M. Acta Mater, 2007; 55: 4845
[28] Wan X J, Chen Y X, Cheng X Y. Prog Nat Sci, 2001; 11: 458
[28] (万晓景, 陈业新, 程晓英. 自然科学进展, 2001; 11: 458)
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[10] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[11] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[12] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[13] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[14] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!