Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 799-806    DOI: 10.11900/0412.1961.2015.00084
Current Issue | Archive | Adv Search |
GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD
Jiaojiao DU,Guojian LI(),Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819
Cite this article: 

Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD. Acta Metall Sin, 2015, 51(7): 799-806.

Download:  HTML  PDF(7509KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to increase the magnetic properties and realize the essential applications in magnetic recording and spintronics devices, it is significant to control the growth mode and grain size of Fe films. In this work, the effects of a high magnetic field (HMF) on the growth and magnetic properties of Fe thin films with different grain sizes by using physics vapor deposition were explored. The decreased grain sizes are obtained by increasing the evaporation source temperatures. It is found that when the evaporation source temperature is 1440 ℃, the grains of film are fine. The growth mode is changed from layered to columnar by HMF. And HMF effectively reduces the defects of Fe film. When the evaporation source temperature is 1400 and 1350 ℃, the grains of films are large. HMF does not change the columnar growth mode of films. However, the width of columns is improved by a HMF. Additionally, HMF increases the average particle (composed of the grains) and grain size of Fe films with different grain sizes. And the surface roughness of all the films is remarkably reduced by a HMF. With the decrease of grain sizes, the ability of HMF on increasing the coercivity, saturation magnetization and squareness ratio of the Fe films is enhanced.

Key words:  high magnetic field      Fe film      nanocrystalline      columnar growth      magnetic properties     
Fund: Supported by National Natural Science Foundation of China (Nos.51101034 and 51425401), Fundamental Research Funds for the Central Universities (Nos.N130509002 and N140902001) and General Project of Science and Technology Education Department of Liaoning Province (No.L2014091)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00084     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/799

Fig.1  XRD patterns of Fe films under different conditions
Fig.2  Growth rate of Fe films prepared without high magnetic field and the grain sizes of Fe films under different conditions
Fig.3  Cross sectional TEM images of Fe films fabricated under different conditions (The width of columns was shown in Figs.3a2, b2, c2, d2 and f2. The diameter of grains was presented in Fig.3e2)

(a1, a2) 1350 ℃/0 T (b1, b2) 1350 ℃/6 T (c1, c2) 1400 ℃/0 T

(d1, d2) 1400 ℃/6 T (e1, e2) 1440 ℃/0 T (f1, f2) 1440 ℃/6 T

Fig.4  SEM images of the Fe films under different conditions

(a) 1350 ℃/0 T (b) 1350 ℃/6 T (c) 1400 ℃/0 T (d) 1400 ℃/6 T (e) 1440 ℃/0 T (f) 1440 ℃/6 T

Fig.5  AFM images and line section analysis of the Fe films under different conditions

(a) 1350 ℃/0 T (b) 1350 ℃/6 T (c) 1400 ℃/0 T

(d) 1400 ℃/6 T (e) 1440 ℃/0 T (f) 1440 ℃/6 T

Fig.6  Magnetic hysteresis (M-H) loops measured at room temperature by applying the magnetic fields perpendicular (a) and parallel (b) to the surface of Fe films under different conditions (M—magnetization, Ms—saturation magnetization, H// —applied field parallel to the film plane, H—applied field perpendicular to the film plane)
Fig.7  Value of magnetic properties of Fe films under different conditions when the applied field is parallel to the film surface

(a) saturation magnetization (Ms) and coercivity (Hc)

(b) remanence ratio (Mr/Ms) and strain ( e) (Mr—remanent magnetization)

[1] Brajpuriyaa R, Tripathi S, Sharma A, Shripathi T, Chaudhari S M. Eur Phys J, 2006; 51B: 131
[2] Tivakornsasithorn K, Alsmadi A M, Liu X, Leiner J C, Choi Y, Keavney D J, Eid K F, Dobrowolska M, Furdyna J K. J Appl Phys, 2013; 113: 133908
[3] Datta S, Das B. Appl Phys Lett, 1990; 56: 665
[4] Mitsuru O, Koher S, Masaaki F. J Appl Phys, 2013; 113: 17C117
[5] Ausanio G, Lannotti V, Amoruso S, Wang X, Aruta C, Arzeo M, Fittipaldi R, Vecchione A, Bruzzese R, Lanotte L. Appl Surf Sci, 2012; 258: 9337
[6] Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H. Acta Mater, 2011; 59: 5568
[7] Ma Y W, Xu A X, Li X H, Zhang X P, Guilloux-Viry M, Pena O, Awaji S, Watanabe K. Appl Phys Lett, 2006; 89: 152505
[8] Appleby D J R, Ponon N K, Kwa K S K, Ganti S, Hannemann U, Petrov P K, Alford N M, O'Neill A. J Appl Phys, 2014; 116: 124105
[9] Masahiro H, Mizuhisa N, Daiyu K, Akio K, Yuji A. Jpn J Appl Phys, 2004; 43: 7337
[10] Kima K H, Leea J D, Leea J J, Ahna B Y, Kima H S, Shin Y W. Thin Solid Films, 2005; 483: 74
[11] He K, Ma L Y, Ma X C, Jia J F, Xue Q K. Appl Phys Lett, 2006; 88: 232503
[12] Wang L L, Wang X, Zheng W T, Ma N, Li H B, Guan Q F, Jin D H, Zong Z G. J Alloys Compd, 2007; 443: 43
[13] Wang Q, Liu Y, Liu T, Gao P F, Wang K, He J C. Appl Phys Lett, 2012; 101: 132406
[14] Li G J, Du J J, Wang H M, Wang Q, Ma Y H, He J C. Mater Lett, 2014; 133: 53
[15] Du J J, Li G J, Wang Q, Cao Y Z, Ma Y H, He J C. Nano, 2014; 9: 1450025
[16] Tahashi M, Sassa K, Hirabayashi I, Asai S. Mater Trans JIM, 2000; 41: 985
[17] Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C. J Magn Magn Mater, 2013; 332: 38
[18] Zhang S X, Duan Z X, Zhang X P, Wang D L, Gao Z S, Han L, Ma Y W, Awaji S, Watanabe K. Appl Phys Express, 2012; 5: 041802
[19] Matsushima H, Nohira T, Ito Y. Electrochem Solid-State Lett, 2004; 7(8): C81
[20] Matsushima H, Fukunaka Y, Ito Y, Bund A, Plieth W. J Electroanal Chem, 2006; 587: 93
[21] Koza J, Uhlemann M, Gebert A, Schultz L. J Solid State Electrochem, 2008; 12: 181
[22] Matsushima H, Nohira T, Ito Y. J Solid State Electrochem, 2004; 8: 195
[23] Matsushima H, Fukunaka Y, Yasuda H, Kikuchi S. ISIJ Int, 2005; 45: 1001
[24] Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C. Sci Adv Mater, 2013; 5: 1
[25] Mebarki M, Layadi A, Guittoum A, Benabas A, Ghebouli B, Saad M, Menni N. Appl Surf Sci, 2011; 257: 7025
[26] Chen M, Wei H L, Liu Z L, Yao K L. Acta Phys Sin, 2001; 50: 2446 (陈 敏, 魏合林, 刘祖黎, 姚凯伦. 物理学报, 2001; 50: 2446)
[27] Tang X D, Wang X F, Long Z H. Mech Eng, 2003; (6): 39 (汤旭东, 王小峰, 龙振湖. 机械工程师, 2003; (6): 39)
[28] Shi X W. Vacuum, 2013; 50(1): 23 (史新伟. 真空, 2013; 50(1): 23)
[29] Ma Y W, Xiao L Y, Yan L G. Chin Sci Bull, 2006; 51: 2944
[30] Jiang S T,Li W. Condensed Matter Physics of Magnetism. Beijing: Science Press, 2003: 211 (姜寿亭,李 卫. 凝聚态磁性物理. 北京: 科学出版社, 2003: 211)
[31] Qu Y. PhD Dissertation, Southeast University, Nanjing, 2003 (瞿 亚. 东南大学博士学位论文, 南京, 2003)
[32] Thomas S, Al-Harthi S H, Sakthikumar D, Al-Omari I A, Ramanujan R V, Yoshida Y. J Phys, 2008; 41D: 155009
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[3] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[4] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[7] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[8] Jianbo YU, Yuan HOU, Chao ZHANG, Zhibin YANG, Jiang WANG, Zhongming REN. Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. 金属学报, 2017, 53(12): 1620-1626.
[9] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[10] ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(4): 473-482.
[11] NI Song, LIAO Xiaozhou, ZHU Yuntian. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS[J]. 金属学报, 2014, 50(2): 156-168.
[12] PENG Xiao, WANG Fuhui. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS[J]. 金属学报, 2014, 50(2): 202-211.
[13] LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. 金属学报, 2014, 50(2): 212-218.
[14] LI Xiaoyan. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS[J]. 金属学报, 2014, 50(2): 219-225.
[15] LI Guojian, WANG Zhen, WANG Qiang, WANG Huimin, DU Jiaojiao, MA Yonghui, HE Jicheng. EFFECT OF OXIDATION TIME UNDER HIGH MAG- NETIC FIELD ON THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF OXIDIZED Co-DOPED ZnO FILMS[J]. 金属学报, 2014, 50(12): 1538-1542.
No Suggested Reading articles found!