|
|
GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD |
Jiaojiao DU,Guojian LI( ),Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI |
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819 |
|
Cite this article:
Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD. Acta Metall Sin, 2015, 51(7): 799-806.
|
Abstract In order to increase the magnetic properties and realize the essential applications in magnetic recording and spintronics devices, it is significant to control the growth mode and grain size of Fe films. In this work, the effects of a high magnetic field (HMF) on the growth and magnetic properties of Fe thin films with different grain sizes by using physics vapor deposition were explored. The decreased grain sizes are obtained by increasing the evaporation source temperatures. It is found that when the evaporation source temperature is 1440 ℃, the grains of film are fine. The growth mode is changed from layered to columnar by HMF. And HMF effectively reduces the defects of Fe film. When the evaporation source temperature is 1400 and 1350 ℃, the grains of films are large. HMF does not change the columnar growth mode of films. However, the width of columns is improved by a HMF. Additionally, HMF increases the average particle (composed of the grains) and grain size of Fe films with different grain sizes. And the surface roughness of all the films is remarkably reduced by a HMF. With the decrease of grain sizes, the ability of HMF on increasing the coercivity, saturation magnetization and squareness ratio of the Fe films is enhanced.
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51101034 and 51425401), Fundamental Research Funds for the Central Universities (Nos.N130509002 and N140902001) and General Project of Science and Technology Education Department of Liaoning Province (No.L2014091) |
[1] | Brajpuriyaa R, Tripathi S, Sharma A, Shripathi T, Chaudhari S M. Eur Phys J, 2006; 51B: 131 | [2] | Tivakornsasithorn K, Alsmadi A M, Liu X, Leiner J C, Choi Y, Keavney D J, Eid K F, Dobrowolska M, Furdyna J K. J Appl Phys, 2013; 113: 133908 | [3] | Datta S, Das B. Appl Phys Lett, 1990; 56: 665 | [4] | Mitsuru O, Koher S, Masaaki F. J Appl Phys, 2013; 113: 17C117 | [5] | Ausanio G, Lannotti V, Amoruso S, Wang X, Aruta C, Arzeo M, Fittipaldi R, Vecchione A, Bruzzese R, Lanotte L. Appl Surf Sci, 2012; 258: 9337 | [6] | Chakravarty S, Jiang M, Tietze U, Lott D, Geue T, Stahn J, Schmidt H. Acta Mater, 2011; 59: 5568 | [7] | Ma Y W, Xu A X, Li X H, Zhang X P, Guilloux-Viry M, Pena O, Awaji S, Watanabe K. Appl Phys Lett, 2006; 89: 152505 | [8] | Appleby D J R, Ponon N K, Kwa K S K, Ganti S, Hannemann U, Petrov P K, Alford N M, O'Neill A. J Appl Phys, 2014; 116: 124105 | [9] | Masahiro H, Mizuhisa N, Daiyu K, Akio K, Yuji A. Jpn J Appl Phys, 2004; 43: 7337 | [10] | Kima K H, Leea J D, Leea J J, Ahna B Y, Kima H S, Shin Y W. Thin Solid Films, 2005; 483: 74 | [11] | He K, Ma L Y, Ma X C, Jia J F, Xue Q K. Appl Phys Lett, 2006; 88: 232503 | [12] | Wang L L, Wang X, Zheng W T, Ma N, Li H B, Guan Q F, Jin D H, Zong Z G. J Alloys Compd, 2007; 443: 43 | [13] | Wang Q, Liu Y, Liu T, Gao P F, Wang K, He J C. Appl Phys Lett, 2012; 101: 132406 | [14] | Li G J, Du J J, Wang H M, Wang Q, Ma Y H, He J C. Mater Lett, 2014; 133: 53 | [15] | Du J J, Li G J, Wang Q, Cao Y Z, Ma Y H, He J C. Nano, 2014; 9: 1450025 | [16] | Tahashi M, Sassa K, Hirabayashi I, Asai S. Mater Trans JIM, 2000; 41: 985 | [17] | Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C. J Magn Magn Mater, 2013; 332: 38 | [18] | Zhang S X, Duan Z X, Zhang X P, Wang D L, Gao Z S, Han L, Ma Y W, Awaji S, Watanabe K. Appl Phys Express, 2012; 5: 041802 | [19] | Matsushima H, Nohira T, Ito Y. Electrochem Solid-State Lett, 2004; 7(8): C81 | [20] | Matsushima H, Fukunaka Y, Ito Y, Bund A, Plieth W. J Electroanal Chem, 2006; 587: 93 | [21] | Koza J, Uhlemann M, Gebert A, Schultz L. J Solid State Electrochem, 2008; 12: 181 | [22] | Matsushima H, Nohira T, Ito Y. J Solid State Electrochem, 2004; 8: 195 | [23] | Matsushima H, Fukunaka Y, Yasuda H, Kikuchi S. ISIJ Int, 2005; 45: 1001 | [24] | Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C. Sci Adv Mater, 2013; 5: 1 | [25] | Mebarki M, Layadi A, Guittoum A, Benabas A, Ghebouli B, Saad M, Menni N. Appl Surf Sci, 2011; 257: 7025 | [26] | Chen M, Wei H L, Liu Z L, Yao K L. Acta Phys Sin, 2001; 50: 2446 (陈 敏, 魏合林, 刘祖黎, 姚凯伦. 物理学报, 2001; 50: 2446) | [27] | Tang X D, Wang X F, Long Z H. Mech Eng, 2003; (6): 39 (汤旭东, 王小峰, 龙振湖. 机械工程师, 2003; (6): 39) | [28] | Shi X W. Vacuum, 2013; 50(1): 23 (史新伟. 真空, 2013; 50(1): 23) | [29] | Ma Y W, Xiao L Y, Yan L G. Chin Sci Bull, 2006; 51: 2944 | [30] | Jiang S T,Li W. Condensed Matter Physics of Magnetism. Beijing: Science Press, 2003: 211 (姜寿亭,李 卫. 凝聚态磁性物理. 北京: 科学出版社, 2003: 211) | [31] | Qu Y. PhD Dissertation, Southeast University, Nanjing, 2003 (瞿 亚. 东南大学博士学位论文, 南京, 2003) | [32] | Thomas S, Al-Harthi S H, Sakthikumar D, Al-Omari I A, Ramanujan R V, Yoshida Y. J Phys, 2008; 41D: 155009 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|