Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 156-168    DOI: 10.3724/SP.J.1037.2013.00616
Current Issue | Archive | Adv Search |
EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS
NI Song1(), LIAO Xiaozhou2, ZHU Yuntian3
1 State Key Lab of Powder Metallurgy, Central South University, Changsha 410083
2 School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
3 Department of Materials Science & Engineering, North Carolina State University, Raleigh, NC 27659-7919, USA
Cite this article: 

NI Song, LIAO Xiaozhou, ZHU Yuntian. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS. Acta Metall Sin, 2014, 50(2): 156-168.

Download:  HTML  PDF(6342KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Severe plastic deformation techniques including high-pressure torsion and equal channel angular pressing have been widely used to refine coarse-grained materials to produce nanocrystalline and ultrafine-grained materials, or manipulate the microstructure of nanocystalline materials for superior mechanical properties. This paper overviews severe plastic deformation induced structural and mechanical property evolutions on bulk nanocrystalline metals, mainly in a nanocrystalline Ni-20%Fe (mass fraction) alloy with a face-centred cubic (fcc) structure processed by high-pressure torsion to different strain values. The structural evolution and mechanical property evolution at different strain values were studied. Comprehensive characterizations on structural evolution during deformation indicate that: (1) grain growth occurred via grain rotation, and is accompanied with changes in dislocation density and twin density; (2) there is a significant grain size effect on deformation induced twinning and de-twinning. There exists an optimum grain size range for the formation of deformation twins. Outside of this grain size range the de-twinning process will dominate to annihilate existing twins; (3) different types of dislocation-twin boundary (TB) interactions occurred during deformation. Dislocation density plays an important role in dislocation-TB interactions. In a twinned grain with a low dislocation density, a dislocation may react with a TB to fully or partially penetrate the TB or to be absorbed by the TB via different dislocation reactions. In a twinned grain with a high dislocation density, dislocations tangle with each other and are pinned at the TBs, leading to the accumulation of dislocations at the TBs and raising the local strain energy. In order to release the stress concentration, stacking faults and secondary twins formed by partial dislocation emissions from the other side of the TB; (4) atom probe tomography investigation reveals that C and S atoms, which are the major impurities in the Ni-Fe alloy and segregated at grain boundaries (GBs) of the as-deposited material, migrated from disappearing GBs to the remaining GBs during high-pressure torsion. Investigation on structure-hardness relationship of the Ni-Fe alloy reveals that: strain hardening and strain softening occurred at different deformation stages. Dislocation density evolution plays a major role in the hardness evolution, while other structural evolutions, including twin density and grain size evolutions, play minor roles in the hardness evolution.

Key words:  severe plastic deformation      nanocrystalline material      dislocation      twin      strain hardening      strain softening     
Received:  26 September 2013     
ZTFLH:  TG14  
Fund: Supported by National Natural Science Foundation of China (No.51301207) and China Postdoctoral Science Foundation (No.2013M531806)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00616     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/156

Fig.1  

硬度测试位置示意图[24]

Fig.2  

内部包含多颗亚晶的晶粒的TEM像[15]

Fig.3  

Lomer-Cottrel (L-C)不可动位错的HRTEM像[22],

Fig.4  

原始样品、10圈高压扭转(HPT)处理后样品边缘和20圈HPT处理后样品边缘的TEM像[23]

Fig.5  

不同变形量样品中所有晶粒的尺寸分布以及发生孪晶的晶粒的尺寸分布图[23]

Fig.6  

孪晶和去孪晶发生趋势与晶粒尺寸关系图[23]

Fig.7  

去孪晶形成的孪晶界上的台阶的HRTEM像[23]

Fig.8  

Thompson四面体示意图[56]

Fig.9  

全位错完全穿过孪晶界后位错组态的HRTEM像[56]

Fig.10  

全位错部分穿过孪晶界留下的位错组态的HRTEM像[56]

Fig.11  

全位错与孪晶界上的不全位错反应留下的位错组态的HRTEM像[56]

Fig.12  

大量位错堆积在孪晶界上的TEM像[56]

Fig.13  

Ni, Fe, C和S跨越1个晶界处的一维成分分布图[27]

Fig.14  

不同应变量下的样品的硬度[22]

Deformation stage Equivalent strain Dislocation
density / m-2
Average grain
size / nm
As-deposited 0 2.2 × 1015 21
I 0~4.5 3.6 × 1015 22
II 4.5~20 5.8 × 1015 30
III 20~35 4.1 × 1015 35
IV 35~182 6.0 × 1015 50
V 180~340 2.1 × 1015 72
VI 340~550 2.0 × 1015 120
表1  原始样品及不同变形阶段样品的位错密度和平均晶粒尺寸[22]
[1] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[2] Zhilyaev A P, Langdon T G. Prog Mater Sci, 2008; 53: 893
[3] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881
[4] Valiev R Z, Alexandrov I V, Zhu Y T, Lowe T C. J Mater Res, 2002; 17: 5
[5] Torre F D, Lapovok R, Sandlin J, Thomson P F, Davies C H J, Pereloma E V. Acta Mater, 2004; 52: 4819
[6] Hansen N, Huang X. Acta Mater, 1998; 46: 1827
[7] Liao X Z, Zhao Y H, Zhu Y T, Valiev R Z, Gunderov D V. J Appl Phys, 2004; 96: 636
[8] Wang K, Tao N R, Liu G, Lu J. Acta Mater, 2006; 54: 5281
[9] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[10] Li Y S, Tao N R, Lu K. Acta Mater, 2008; 56: 230
[11] Mohamed F A. Acta Mater, 2003; 51: 4107
[12] Wang Y B, Liao X Z, Zhao Y H, Lavernia E J, Ringer S P, Horita Z, Langdon T G, Zhu Y T, Mater Sci Eng, 2010; A527: 4959
[13] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[14] Liao X Z, Kilmanetov A R, Valiev R Z, Gao H S, Li S D, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
[15] Wang Y B, Ho J C, Liao X Z, Li H Q, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 011908
[16] Li L, Ungar T, Wang Y D, Fan G J, Yang Y L, Jia N, Ren Y, Tichy G, Lendvai J, Choo H, Liaw P K. Scr Mater, 2009; 60: 317
[17] Fan G J, Fu L F, Choo H, Liaw P K, Browning N D. Acta Mater, 2006; 54: 4781
[18] Gianola D S, Petegem S V, Legros M, Brandstetter S, Swygenhoven H V, Hemker K J. Acta Mater, 2006; 54: 2253
[19] Fan G J, Wang Y D, Fu L F, Choo H, Liaw P K, Ren Y, Browning N D. Appl Phys Lett, 2006; 88: 171914
[20] Wang Y B, Ho J C, Cao Y, Liao X Z, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Zhu Y T. Appl Phys Lett, 2009; 94: 091911
[21] Li L, Ungar T, Wang Y D, Morris J R, Tichy G, Lendvai J, Yang Y L, Ren Y, Choo H, Liaw P K. Acta Mater, 2009; 57: 4988
[22] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Scr Mater, 2010; 64: 327
[23] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Phys Rev, 2012; 84B: 235401
[24] Ni S, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 3398
[25] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Zhao Y H, Lavernia E J, Ringer S P, Langdon T G, Zhu Y T. Mater Sci Eng, 2011; A528: 4807
[26] Li H Q, Ebrahimi F. Mater Sci Eng, 2003; A347: 93
[27] Ni S, Sha G, Wang Y B, Liao X Z, Alhajeri S N, Li H Q, Zhu Y T, Langdon T G, Ringer S P. Mater Sci Eng, 2011; A528: 7500
[28] Sansoz F, Dupont V. Appl Phys Lett, 2006; 89: 111901
[29] Farkas D, Froseth A, Swygenhoven H V. Scr Mater, 2006; 55: 695
[30] Shan Z W, Stach E A, Wiezorek J M K, Knap J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[31] Wang Y B, Li B Q, Sui M L, Mao S X. Appl Phys Lett, 2008; 92: 011903
[32] Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
[33] Shan Z W, Mishra R K, Asif S A S, Warren O L, Minor A M. Nat Mater, 2008; 7: 115
[34] Rodney D, Phillips R. Phys Rev Lett, 1999; 82: 1704
[35] Wu X L, Zhu Y T. Phys Rev Lett, 2008; 101: 025503
[36] Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[37] Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W, Zhu Y T. Appl Phys Lett, 2003; 83: 632
[38] Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2002; 50: 5005
[39] Li N, Wang J, Huang J Y, Misra A, Zhang X. Scr Mater, 2011; 64: 149
[40] Wang J, Li N, Anderoglu O, Zhang X, Misra A, Huang J Y, Hirth J P. Acta Mater, 2010; 58: 2262
[41] Zhang J Y, Liu G, Wang R H, Li J, Sun J, Ma E. Phys Rev, 2010; 81B: 172104
[42] Zhu Y T, Liao X Z, Srinivasan S G, Lavernia E J. J Appl Phys, 2005; 98: 034319
[43] Wen H M, Zhao Y H, Li Y, Ertorer O, Nesterov K M, Islamgaliev R K, Valiev R Z, Lavernia E J. Philos Mag, 2010; 90: 4541
[44] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[45] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[46] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[47] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906
[48] Wang Y B, Wu B, Sui M L. Appl Phys Lett, 2008; 93: 041906
[49] Zhao Y H, Bingert J F, Liao X Z, Cui B Z, Han K, Sergueeva A V, Mukherjee A K, Valiev R Z, Langdon T G, Zhu Y T. Adv Mater, 2006; 18: 2949
[50] Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 4135
[51] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[52] Jin Z H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H.Scr Mater, 2006; 54: 1163
[53] Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
[54] Rice J R. J Mech Phys Solid, 1992; 40: 239
[55] Shabib I, Miller R E. Modell Simul Mater Sci Eng, 2009; 17: 055009
[56] Ni S, Wang Y B, Liao X Z, Figueiredo R B, Li H Q, Ringer S P, Langdon T G, Zhu Y T. Acta Mater, 2012; 60: 3181
[57] Huang J Y, Zhu Y T, Liao X Z, Valiev R Z. Philos Mag Lett, 2004; 84: 183
[58] Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[59] Ivanisenko Y, Maclaren I, Sauvage X, Valiev R Z, Fecht H J. Acta Mater, 2006; 54: 1659
[60] Mazilkin A A, Straumal B B, Rabkin E, Baretzky B, Enders S, Protasova S G, Kogtenkova O A, Valiev R Z. Acta Mater, 2006; 54: 3933
[61] Straumal B B, Baretzky B, Mazilkin A A, Phillipp F, Kogtenkova O A, Volkov M N, Valiev R Z. Acta Mater, 2004; 52: 4469
[62] Ivanisenko Yu V, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 433
[63] Shen H, Li Z, Günther B, Korznikov A V, Safarov I M, Valiev R Z. Nanostruct Mater, 1995; 6: 385
[64] Wang Y B, Liao X Z, Zhao Y H, Cooley J C, Horita Z, Zhu Y T. Appl Phys Lett, 2013; 102: 231912
[65] Zhang L C, Calin M, Paturaud F, Mickel C, Eckert J. Appl Phys Lett, 2007; 90: 201908
[66] Okamoto H. Phase Diagram for Binary Alloy. OH, USA: ASM International, 2000: 1
[67] Gall R L, Liao G, Saindrenan G. Scr Mater, 1999; 41: 427
[68] Gall R L, Quérard E, Saindrenan G, Mourton H, Roptin D. Scr Mater, 1996; 35: 1175
[69] Parthasarathy T A, Shewmon P G. Scr Metall, 1983; 17: 943
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[4] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[5] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[6] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[7] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[8] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[9] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[10] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[14] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[15] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
No Suggested Reading articles found!