Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 212-218    DOI: 10.3724/SP.J.1037.2013.00617
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION
LIU Li, LI Ying, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  HTML  PDF(702KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Compared with the traditional coarse-grained materials, the electrochemical corrosion behavior of nanocrystalline materials has changed obviously. Nanocrystallization influences the properties of passive film on passive materials. In this paper, the current understanding of the growth of passive film and local pitting corrosion on nanocrystalline materials by dynamic research techniques were reviewed. The results indicate that nanocrystallization changed the nucleation mechanism of the passive film from progressive to instantaneous, and which promotes the growth rate of the passive film, both of which promote the compact properties of the passive film. The effects of nanocrystallization on local pitting corrosion behavior are concluded: (1) more frequent occurrence of metastable pits, but with lower probability of transition to stable pits, which is attributable to differences in morphologies of sulfur and manganese as well as outstanding repassivation ability of nanocrystalline thin film; (2) nanocrystallization decreases stable pit generation rate and its propensity to form larger pit cavities, and modifies the morphology of stable pit cavity.
Key words:  nanocrystalline material      passivation      pitting      in-situ AFM observation      electrochemical corrosion     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China (Nos.50801063 and 51271187)
Corresponding Authors:  LIU Li, professor, Tel: (024)2392 5323, E-mail: liliu@imr.ac.cn   

Cite this article: 

LIU Li,LI Ying,WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION. Acta Metall Sin, 2014, 50(2): 212-218.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00617     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/212

[1] Intrui R B, Szklarska-Smialowska Z. Corrosion, 1992; 48: 398
[2] Li Y, Wang F H, Liu G. Corrosion, 2004; 60: 891
[3] Mariano N A, Souza C A C, Oliviera M F. Mater Sci Forum, 2000; 343: 861
[4] Zeiger W, Schneider M, Scharnweber D. Nanostruct Mater, 1995; 6: 1013
[5] Youssef K M S, Koch C C, Fedkiw P S. Corros Sci, 2004; 46: 51
[6] Wang L P, Zhang J Y, Gao Y, Xue Q J, Hu L T, Xu T. Scr Mater, 2006; 55: 657
[7] Wang X Y, Li D Y. Electrochim Acta, 2002; 47: 3939
[8] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 2392
[9] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 7193
[10] Zhang B, Li Y, Wang F H. Corros Sci, 2007; 49: 2071
[11] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 54: 768
[12] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[13] Ye W, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4426
[14] Philipp R, Retter U. Electrochim Acta, 1995; 40: 1581
[15] Philipp R, Retter U. Thin Solid Films, 1991; 207: 42
[16] Vvedenskii A V, Grushevskaya S N. Corros Sci, 2003; 45: 2391
[17] Hills G J, Peter L M, Scharifker B R. J Electroanal Chem, 1981; 124: 247
[18] Pan C, Liu L, Li Y, Wang S G, Wang F H. Electrochim Acta, 2011; 56: 7740
[19] Ji H B, Lin W M. J Chem Ind Eng, 1997; 48: 453
[20] Pan C. PhD Dissertation. Institute of Metal Research, Chinese Academy of Science, Shenyang, 2012
(潘 晨. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[21] Song S Z, Tang Z L. Acta Metall Sin, 1995; 31: B61
(宋诗哲, 唐子龙. 金属学报 1995; 31: B61)
[22] Liu L, Li Y, Wang F H. J Mater Sci Technol, 2010; 26: 1
[23] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 53: 2453
[24] Pan C, Liu L, Li Y, Wang F H. Corros Sci, 2013; 73: 32
[25] Zheng S J, Wang Y J, Zhang B, Zhu Y L, Liu C, Hu P, Ma X L. Acta Mater, 2010; 58: 5070
[26] Liu L, Li Y, Wang F H. Electrochim Acta, 2010; 55: 2430
[27] Burstein G, Vines S. J Electrochem Soc, 2001; 148: B504
[28] Pan C, Liu L, Li Y, Wang F H. Thin Solid Film, 2011; 519: 4781
[29] Shibata T. Corros Sci, 1996; 52: 813
[30] Gumbel E J. Statistics of Extremes. New York: Columbia University Press, 1957: 87
[31] Sun D, Jiang Y, Tang Y, Xiang Q, Zhong C, Liao J, Li J. Electrochim Acta, 2009; 54: 1558
[1] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[2] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[3] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[4] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[5] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[6] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[7] Lining XU,Jinyang ZHU,Bei WANG. Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels[J]. 金属学报, 2017, 53(6): 677-683.
[8] Yao WANG,Chunfu LI,Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy[J]. 金属学报, 2017, 53(5): 622-630.
[9] Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(6): 679-688.
[10] Yue HE,Song XIANG,Wei SHI,Jianmin LIU,Yu LIANG,Chaoyi CHEN. EFFECT OF MICROSTRUCTURAL EVOLUTION ON THE PITTING CORROSION OF COLD DRAWING PEARLITIC STEELS[J]. 金属学报, 2016, 52(12): 1536-1544.
[11] Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY[J]. 金属学报, 2016, 52(11): 1413-1422.
[12] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[13] Haiwei HUANG, Zhenbo WANG, Li LIU, Xingping YONG, Ke LU. FORMATION OF A GRADIENT NANOSTRUCTURED SURFACE LAYER ON A MARTENSITIC STAINLESS STEEL AND ITS EFFECTS ON THE ELECTRO- CHEMICAL CORROSION BEHAVIOR[J]. 金属学报, 2015, 51(5): 513-518.
[14] WANG Yong, ZHENG Yugui, WANG Jianqiang, LI Meiling, SHEN Jun. PASSIVATION BEHAVIOR OF Fe-BASED AMORPHOUS METALLIC COATING IN NaCl AND H2SO4 SOLUTIONS[J]. 金属学报, 2015, 51(1): 49-56.
[15] XIN Sensen, LI Moucheng, SHEN Jianian. EFFECT OF TEMPERATURE AND CONCENTRATION RATIO ON PITTING RESISTANCE OF 316L STAINLESS STEEL IN SEAWATER[J]. 金属学报, 2014, 50(3): 373-378.
No Suggested Reading articles found!