Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 212-218    DOI: 10.3724/SP.J.1037.2013.00617
Current Issue | Archive | Adv Search |
ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION
LIU Li(), LI Ying, WANG Fuhui
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION. Acta Metall Sin, 2014, 50(2): 212-218.

Download:  HTML  PDF(702KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Compared with the traditional coarse-grained materials, the electrochemical corrosion behavior of nanocrystalline materials has changed obviously. Nanocrystallization influences the properties of passive film on passive materials. In this paper, the current understanding of the growth of passive film and local pitting corrosion on nanocrystalline materials by dynamic research techniques were reviewed. The results indicate that nanocrystallization changed the nucleation mechanism of the passive film from progressive to instantaneous, and which promotes the growth rate of the passive film, both of which promote the compact properties of the passive film. The effects of nanocrystallization on local pitting corrosion behavior are concluded: (1) more frequent occurrence of metastable pits, but with lower probability of transition to stable pits, which is attributable to differences in morphologies of sulfur and manganese as well as outstanding repassivation ability of nanocrystalline thin film; (2) nanocrystallization decreases stable pit generation rate and its propensity to form larger pit cavities, and modifies the morphology of stable pit cavity.

Key words:  nanocrystalline material      passivation      pitting      in-situ AFM observation      electrochemical corrosion     
Received:  27 September 2013     
ZTFLH:  TG172.5  
Fund: Supported by National Natural Science Foundation of China (Nos.50801063 and 51271187)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00617     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/212

[1] Intrui R B, Szklarska-Smialowska Z. Corrosion, 1992; 48: 398
[2] Li Y, Wang F H, Liu G. Corrosion, 2004; 60: 891
[3] Mariano N A, Souza C A C, Oliviera M F. Mater Sci Forum, 2000; 343: 861
[4] Zeiger W, Schneider M, Scharnweber D. Nanostruct Mater, 1995; 6: 1013
[5] Youssef K M S, Koch C C, Fedkiw P S. Corros Sci, 2004; 46: 51
[6] Wang L P, Zhang J Y, Gao Y, Xue Q J, Hu L T, Xu T. Scr Mater, 2006; 55: 657
[7] Wang X Y, Li D Y. Electrochim Acta, 2002; 47: 3939
[8] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 2392
[9] Liu L, Li Y, Wang F H. Electrochim Acta, 2007; 52: 7193
[10] Zhang B, Li Y, Wang F H. Corros Sci, 2007; 49: 2071
[11] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 54: 768
[12] Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4277
[13] Ye W, Li Y, Wang F H. Electrochim Acta, 2006; 51: 4426
[14] Philipp R, Retter U.Electrochim Acta, 1995; 40: 1581
[15] Philipp R, Retter U. Thin Solid Films, 1991; 207: 42
[16] Vvedenskii A V, Grushevskaya S N. Corros Sci, 2003; 45: 2391
[17] Hills G J, Peter L M, Scharifker B R. J Electroanal Chem, 1981; 124: 247
[18] Pan C, Liu L, Li Y, Wang S G, Wang F H. Electrochim Acta, 2011; 56: 7740
[19] Ji H B, Lin W M.J Chem Ind Eng, 1997; 48: 453
[20] Pan C.PhD Dissertation. Institute of Metal Research, Chinese Academy of Science, Shenyang, 2012
(潘 晨. 中国科学院金属研究所博士学位论文, 沈阳, 2012)
[21] Song S Z, Tang Z L. Acta Metall Sin, 1995; 31: B61
(宋诗哲, 唐子龙. 金属学报 1995; 31: B61)
[22] Liu L, Li Y, Wang F H. J Mater Sci Technol, 2010; 26: 1
[23] Liu L, Li Y, Wang F H. Electrochim Acta, 2008; 53: 2453
[24] Pan C, Liu L, Li Y, Wang F H. Corros Sci, 2013; 73: 32
[25] Zheng S J, Wang Y J, Zhang B, Zhu Y L, Liu C, Hu P, Ma X L. Acta Mater, 2010; 58: 5070
[26] Liu L, Li Y, Wang F H. Electrochim Acta, 2010; 55: 2430
[27] Burstein G, Vines S. J Electrochem Soc, 2001; 148: B504
[28] Pan C, Liu L, Li Y, Wang F H. Thin Solid Film, 2011; 519: 4781
[29] Shibata T. Corros Sci, 1996; 52: 813
[30] Gumbel E J. Statistics of Extremes. New York: Columbia University Press, 1957: 87
[31] Sun D, Jiang Y, Tang Y, Xiang Q, Zhong C, Liao J, Li J. Electrochim Acta, 2009; 54: 1558
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[5] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[6] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[7] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[8] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[9] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[10] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[11] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[12] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[14] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[15] Lining XU,Jinyang ZHU,Bei WANG. Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels[J]. 金属学报, 2017, 53(6): 677-683.
No Suggested Reading articles found!