Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1538-1542    DOI: 10.11900/0412.1961.2014.00376
Current Issue | Archive | Adv Search |
EFFECT OF OXIDATION TIME UNDER HIGH MAG- NETIC FIELD ON THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF OXIDIZED Co-DOPED ZnO FILMS
LI Guojian, WANG Zhen, WANG Qiang, WANG Huimin, DU Jiaojiao, MA Yonghui, HE Jicheng
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819
Cite this article: 

LI Guojian, WANG Zhen, WANG Qiang, WANG Huimin, DU Jiaojiao, MA Yonghui, HE Jicheng. EFFECT OF OXIDATION TIME UNDER HIGH MAG- NETIC FIELD ON THE MICROSTRUCTURE AND OPTICAL PROPERTIES OF OXIDIZED Co-DOPED ZnO FILMS. Acta Metall Sin, 2014, 50(12): 1538-1542.

Download:  HTML  PDF(2569KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of the oxidation time under high magnetic field on the microstructure and optical properties of oxidized Co-doped Zn prepared by vacuum evaporation were studied by FESEM, XRD and ultraviolet visible spectrophotometer. The results show that the growth of coral dendritic structures of ZnO films is inhibited by high magnetic field. Spherical particles of ZnO film oxidized for 60 min without magnetic field transforms to leaf like morphologies with the application of a 6 T magnetic field. With increasing oxidation time under high magnetic field, the preferred orientation of (101) transforms to (002); distribution of magnetic Co atoms in ZnO is influenced; the band gap is decreased to the range of 2.95~3.13 eV. The transmittance is decreased by the spherical morphologies. However, it is increased by the application of high magnetic field. These results give a new method to tune the microstructure and optical properties of surface morphology, preferred orientation, magnetic atomic distribution, transmittance, and band gap.

Key words:  ZnO film      Zn oxide      transmittance      high magnetic field      vacuum evaporation     
ZTFLH:  TB303  
Fund: Supported by National Natural Science Foundation of China (No.51101034), Fundamental Research Funds for the Central Universities (Nos.N130509002, N120609001 and N110809001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00376     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1538

Fig.1  SEM images of Co-doped ZnO films with different oxidation times with and without high magnetic field
Fig.2  XRD patterns of Co-doped ZnO films with different oxidation times
Fig.3  Transmission spectra of Co-doped ZnO films with different oxidation times

(a) 0 T (b) 6 T

Fig.4  (αhν)2-hν of Co-doped ZnO films with different oxidization times (α—light absorption coefficient, hν—incident photon energy)

(a) 40 min (b) 50 min (c) 60 min

[1] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, Morkoç H. J Appl Phys, 2005; 98: 041301
[2] Look D C, Claflin B, Alivov Y I, Park S J. Phys Status Solidi, 2004; 201A: 2203
[3] Pan F, Song C, Liu X J, Yang Y C, Zeng F. Mater Sci Eng, 2008; R62: 1
[4] Hosono H. Thin Solid Films, 2007; 515: 6000
[5] Becheri A, Dürr M, Lo Nostro P, Baglioni P. J Nanopart Res, 2008; 10: 679
[6] Huang X H, Zhang C B, Tay C B, Venkatesan T, Chua S J. Appl Phys Lett, 2013; 102: 111106
[7] Behan A J, Mokhtari A, Blythe H J, Score D, Xu X H, Neal J R, Fox A M, Gehring G A. Phys Rev Lett, 2008; 100: 047206
[8] Li H L, Zhang Z, Lü Y B, Huang J Z, Liu R X. Acta Metall Sin, 2013; 29: 506
(李泓霖, 张 仲, 吕英波, 黄金昭, 刘如喜. 金属学报, 2013; 29: 506)
[9] Aravind A, Hasna K, Jayaraj M K, Kumar M, Chandra R. Appl Phys, 2014; 115A: 843
[10] Li Q, Wang Y Y, Fan L L, Liu J D, Kong W, Ye B J. Scr Mater, 2013; 69: 694
[11] Ney A, Ney V, Kieschnick M, Wilhelm F, Ollefs K, Rogalev A. J Appl Phys, 2014; 115: 172603
[12] Li B B, Richard A, Chen Z F, Shen H L, Luo J. J Sol-Gel Sci Technol, 2014; 70: 19
[13] He R L, Tang B, Ton-That C, Phillips M, Tsuzuki T. J Nanopart Res, 2013; 15: 2030
[14] Rusu G G, Rambu A P, Buta V E, Dobromir M, Luca D, Rusu M. Mater Chem Phys, 2010; 123: 314
[15] Rambu A P, Sirbu D, Iftimie N, Rusu G I. Thin Solid Films, 2011; 520: 1303
[16] Condurache-Bota S, Tigau N, Rambu A P, Rusu G G, Rusu G I. Appl Surf Sci, 2011; 257: 10545
[17] Yildiz A, Kayhan B, Yurduguzel B, Rambu A P, Iacomi F, Simon S. J Mater Sci, 2011; 22: 1473
[18] Wang Q,He J C. Material Science Under High Magnetic Field. Beijing: Science Press, 2014: 1
(王 强,赫冀成. 强磁场材料科学. 北京: 科学出版社, 2014: 1)
[19] Tahashi M, Sassa K, Hirabayashi I, Asai S. Mater Trans, 2000; 41: 985
[20] Ren S Y, Ren Z M, Ren W L, Cao G H. Acta Phys Sin, 2009; 58: 5567
(任树洋, 任忠鸣, 任维丽, 操光辉. 物理学报, 2009; 58: 5567)
[21] Li G J, Du J J, Wang H M, Wang Q, Ma Y H, He J C. Mater Lett, 2014; 133: 53
[22] Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C. Sci Adv Mater, 2013; 5: 447
[23] Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C. J Magn Magn Mater, 2013; 332: 38
[24] Wang Q, Liu T, Gao A, Zhang C, Wang C J, He J C. Scr Mater, 2007; 56: 10587
[25] Rambu A P, Rusu G I. Superlattice Mirost, 2010; 47: 300
[26] Huang X H, Li G H, Cao B Q, Wang M, Hao C Y. J Phys Chem, 2009; 113C: 4381
[27] Rambu A P, Sirbu D, Dobromir M, Rusu G G. Solid State Sci, 2012; 14: 1543
[28] Huang X H, Tay C B, Zhan Z Y, Zhang C, Zheng L X, Venkatesan T, Chua S J. Cryst Eng Comm, 2011; 13: 447
[29] Huang X H, Zhang Z Y, Pramoda K P, Zhang C, Zheng L X, Chua S J. Cryst Eng Comm, 2012; 14: 5163
[1] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
[2] Jianbo YU, Yuan HOU, Chao ZHANG, Zhibin YANG, Jiang WANG, Zhongming REN. Effect of High Magnetic Field on the Microstructure in Directionally Solidified Co-Al-W Alloy[J]. 金属学报, 2017, 53(12): 1620-1626.
[3] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[4] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
[5] ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(4): 473-482.
[6] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[7] XIA Zhixin ZHANG Chi YANG Zhigang. EFFECT OF HIGH MAGNETIC FIELD ON PRECIPITATION BEHAVIORS AND MECHANICAL PROPERTIES IN REDUCED ACTIVATION STEELS[J]. 金属学报, 2011, 47(6): 713-719.
[8] LI Guimao WANG Engang ZHANG Lin ZUO Xiaowei HE Jicheng. EFFECTS OF HIGH MAGNETIC FIELD ON THE PRECIPITATE AND PROPERTY OF Cu-25%Ag ALLOY[J]. 金属学报, 2010, 46(9): 1128-1132.
[9] ZHANG Lin WANG Engang ZUO Xiaowei HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSITION BEHAVIOR OF Cu–RICH PARTICLES IN Cu–80%Pb HYPERMONOTECTIC ALLOY[J]. 金属学报, 2010, 46(4): 423-428.
[10] ZHENG Bin ZHOU Wei WANG Yinong QI Min. MARTENSITE TRANSFORMATION IN TiNi ALLOY UNDER COUPLING TEMPERATURE AND HIGH MAGNETIC FIELD USING LANDAU THEORY MODEL[J]. 金属学报, 2009, 45(1): 37-42.
[11] Wang Qi-Chao; Zhi-Gang Yang. A THEORETICAL ANALYSIS ON FORMATION OF GRAIN ELONGATION AND ALIGNED TWO-PHASE STRUCTURES INDUCED BY HIGH MAGNETIC FIELD[J]. 金属学报, 2008, 44(6): 708-712 .
[12] GONG Ming-Long; Xiang Zhao; Shoujing WANG; liang zuo. EFFECT OF MAGNETIC FIELD STRENGTH ON MICROSTRUCTURE OF PROEUTECTOID FERRITE IN FE-0.76%C ALLOY[J]. 金属学报, 2008, 44(5): 615-618 .
[13] Lin Zhang; Xiaowei Zuo; Jicheng He. Formation of Cu-rich Sphere Phase in Cu-80wt%Pb Hypermonotectic Alloys and the Effect of High Magnetic Field[J]. 金属学报, 2008, 44(2): 165-171 .
[14] YU Jian-Bo. Effect of electromagnetic vibration on the structure in solidified Al-4.5%Cu alloy under a strong magnetic field[J]. 金属学报, 2008, 44(2): 172-176 .
[15] Xiang Zhao; Shoujing WANG; GONG Ming-Long; liang zuo. Influence of austenization temperature on the morphology of pearlite in Fe-0.12%C alloy under high magnetic field[J]. 金属学报, 2008, 44(11): 1305-1309 .
No Suggested Reading articles found!