Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 742-756    DOI: 10.11900/0412.1961.2017.00535
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields
Qiang WANG1(), Meng DONG1,2, Jinmei SUN1,2, Tie LIU1, Yi YUAN3
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields. Acta Metall Sin, 2018, 54(5): 742-756.

Download:  HTML  PDF(14757KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the research on materials processing under high magnetic fields has developed rapidly. This paper reviews the progress of solidification process control of metal materials and the preparation of new materials under high magnetic fields. The influences of Lorentz force, thermoelectromagnetic force and magnetic force on the melt flow, solute distribution and microstructure evolution in the alloy, the effects of magnetic moment on the crystal orientation of magnetic phase, and the effects of magnetic dipole-dipole interactions on phase arrangement in alloys were mainly introduced. At the same time, this paper also summarizes the progress of preparing new functional materials such as gradient MnSb/MnSb-Sb composites, gradient magnetostrictive materials, and materials which have anisotropy of crystal orientation by the solidification method under high magnetic fields. The high magnetic fields control the solidification process of the metals to improve the microstructure of the materials and further improve the material properties. This provides a new way for the development of new functional materials.

Key words:  high magnetic field      alloy      solidification      functional material      graded material      anisotropic material     
Received:  14 December 2017     
ZTFLH:  TG 430.99  
Fund: Supported by National Natural Science Foundation of China (Nos.51425401, 51404060, 51690161, 51574073 and 51774086)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00535     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/742

Fig.1  Temperature fluctuations in the molten silicon when magnetic field strength (H) is 0, 39800 and 79600 A/m[34]
Fig.2  Schematic illustration of increase or decrease of Deff due to thermo-electromagnetic convection effect (TEMCE) and electromagnetic braking effect (EMBE) (Deff—effective diffusivity, f(B)—magnetic field induction intensity)[56]
Fig.3  BSE images of directionally solidified Al-4.5%Cu (mass fraction) alloy under different magnetic fields[62]
(a)transverse, 0 T (b) transverse, 2 T (c) transverse, 6 T
(d) longitudinal, 0 T (e) longitudinal, 2 T (f) longitudinal, 6 T
Fig.4  Microstructures of samples under different experimental conditions[66]
(a) 0 T, 0 A (b) 0 T, 90 A (c) 10 T, 0 A (d) 10 T, 90 A
Fig.5  Micrographs of MnSb/Sb-MnSb gradients in Mn-89.7%Sb (mass fraction) alloys solidified without and with 11.5 T magnetic field in different field gradients and various holding time (B—magnetic induction intensity, g—gravitational acceleration, BdB/dz—the gradient of the magnetic field in the direction of the z axis)[68]
(a) 0 T, 30 min (b) BdB/dz = -114 T2/m, 30 min (c) BdB/dz = -282 T2/m, 30 min (d) BdB/dz = -282 T2/m, 90 min (e) BdB/dz = 282 T2/m, 30 min
Fig.6  Microstructures (a~d) and volume fraction distribution in longitudinal section (e) of directionally solidified Al-8%Fe (mass fraction) alloy grown at 30 μm/s under various applied magnetic fields (V—solidification rate)[74]
(a) 0 T (b) 0.4 T (c) 1 T (d) 6 T (e) volume fraction distribution of the primary Al3Fe phase (The starting point of the abscissa distance corresponds to the top position of the above metallograph)
Fig.7  Longitudinal microstructures of the Mn-89.7%Sb (mass fraction) alloy specimens after the annealing process at 0 and 11.5 T with different annealing time[76]
(a) 0 T, 30 min (b) 11.5 T, 30 min (c) 11.5 T, 60 min (d) 11.5 T, 90 min
Fig.8  Inverse pole figures of the TbFe2 alloys treated without (a) and with (b) 8.8 T magnetic field[84]
Fig.9  Microstructures (a, c) and the volume fractions of the MnSb and Sb phases along the depth from the top surface layer in the specimen (b, d) for Mn-89.7%Sb (mass fraction) hypoeutectic alloy solidified under BdB/dz=-250 T2/m (a, b) and 314 T2/m (c, d) [87]
Fig.10  <111> orientation degrees (O<111>) of (Tb, Dy)Fe2 through the depths of alloys solidified in various high magnetic field gradients (a) and the maximum magnetostriction of alloys solidified in various high magnetic fields at 3.184×105 A/m (b)[91]
Fig.11  Saturation magnetization distributions in Mn-89.7%Sb (mass fraction) alloys solidified without (a) and with (b) a symmetrically graded magnetic field of 12 T, and corresponding magnetic-field gradient distribution (c)(Ms—saturation magnetization, G—magnetic field gradient) [92]
Fig.12  Magnetostrictions as functions of the magnetic field under different compressive stresses for the master and treated alloys [84]
Fig.13  Macrostructures of the Bi-4.36%Mn (mass fraction) alloy solidified under various conditions[99]
(a) 0 T (b) 11.5 T
Fig.14  Optical micrographs of the longitudinal section of the Tb0.27Dy0.73Fe1.95 alloys[100]
(a) master
(b) remelted without magnetic field
(c) remelted with a 4.4 T magnetic field
Fig.15  Longitudinal section microstructures of Tb0.27Dy0.73Fe1.95 alloy with 50 μm/s pulling rate under different magnetic field conditions
(a) 0 T (b) 6 T
[1] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Switzerland: Trans Tech. Publications Ltd., 1992: 3
[2] Wei X X, Xu W, Kang J L.Phase selection in solidification of undercooled Co-B alloys[J]. J. Mater. Sci. Technol., 2017, 33: 352
[3] Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13
[4] Johnson D R, Inui H, Yamaguchi M.Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAl-Si alloys[J]. Acta Mater., 1996, 44: 2523
[5] Ding X F, Lin J P, Zhang L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scr. Mater., 2011, 65: 61
[6] Liang Y J, Cheng X, Wang H M.A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification[J]. Acta Mater., 2016, 118: 17
[7] Roehling J D, Coughlin D R, Gibbs J W, et al.Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J]. Acta Mater., 2017, 131: 22
[8] Ramirez-Ledesma A L, Lopez-Molina E, Lopez H F, et al. Athermal ε-martensite transformation in a Co-20Cr alloy: Effect of rapid solidification on plate nucleation[J]. Acta Mater., 2016, 111: 138
[9] Watanabe Y, Eryu H, Matsuura K.Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique[J]. Acta Mater., 2001, 49: 775
[10] Wang K, Zhang Z M, Yu T, et al.The transfer behavior in centrifugal casting of SiCp/Al composites[J]. J. Mater. Process. Technol., 2017, 242: 60
[11] Watanabe Y, Oike S.Formation mechanism of graded composition in Al-Al2Cu functionally graded materials fabricated by a centrifugal in situ method[J]. Acta Mater., 2005, 53: 1631
[12] Davies P, Pederson R, Coleman M, et al.The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air[J]. Acta Mater., 2016, 117: 51
[13] Mo Y F, Tian Z A, Liu R S, et al.Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts[J]. J. Alloys Compd., 2016, 688: 654
[14] Aoyama T, Kuribayashi K.Influence of undercooling on solid/liquid interface morphology in semiconductors[J]. Acta Mater., 2000, 48: 3739
[15] Friedrich J, Reimann C, Jauss T, et al.Engulfment and pushing of Si3N4 and SiC particles during directional solidification of silicon under microgravity conditions[J]. J. Cryst. Growth, 2017, 475: 33
[16] Konishi T, Nagai H, Nakata Y, et al.Microstructure and magnetic properties of Sm2Fe17 alloy prepared by unidirectional solidification in microgravity[J]. J. Magn. Magn. Mater., 2004, 269: 48
[17] Qiu Y Q, Jia G L, Liu X H, et al.Microstructure and mechanical properties of electromagnetic centrifugal cast 1Cr25Ni20Si2 tube blank[J]. J. Iron Steel Res. Int., 2006, 13: 67
[18] Zhong Y B, Wang J, Zheng T X, et al.Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification[J]. Mater. Today Proc., 2015, 2(suppl.2): S364
[19] Tang Y F, Qiu S, Miao Q, et al.Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields[J]. J. Eur. Ceram. Soc., 2016, 36: 1233
[20] Jie J C, Zou Q C, Sun J L, et al.Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57
[21] Li L, Xu B, Tong W P, et al.Directional growth of tin crystals controlled by combined solute concentration gradient field and static magnetic field[J]. Acta Metall. Sin., 2015, 28: 725
[22] Poodt P W G, Heijna M C R, Christianen P C M, et al. Using gradient magnetic fields to suppress convection during crystal growth[J]. Cryst. Growth Des., 2006, 6: 2275
[23] Wrobel W A, Fornalik-Wajs E, Szmyd J S.Analysis of the influence of a strong magnetic field gradient on convection process of paramagnetic fluid in the annulus between horizontal concentric cylinders[J]. J. Phys. Conf. Ser., 2012, 395: 012124
[24] Yasuda H, Ohnaka I, Fujimoto S, et al.Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scr. Mater., 2006, 54: 527
[25] Wang Q, Liu T, Wang K, et al.Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure[J]. ISIJ Int., 2014, 54: 516
[26] Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105
[27] Li X, Ren Z M, Yu J B, et al.Solidification structure of primary MnBi phase in Bi-Mn alloy under high magnetic field[J]. Acta. Metall. Sin., 2005, 41: 685(李喜, 任忠鸣, 余建波等. Bi-Mn合金片状初生MnBi相在强磁场中的凝固组织[J]. 金属学报, 2005, 41: 685)
[28] De Rango P, Lees M, Lejay P, et al.Texturing of magnetic materials at high temperature by solidification in a magnetic field[J]. Nature, 1991, 349: 770
[29] Asai S, Sassa K S, Tahashi M.Crystal orientation of non-magnetic materials by imposition of a high magnetic field[J]. Sci. Technol. Adv. Mater., 2003, 4: 455
[30] Utech H P, Flemings M C.Elimination of solute banding in indium antimonide crystals by growth in a magnetic field[J]. J. Appl. Phys., 1966, 37: 2021
[31] Bergman M I, Fearn D R, Bloxham J.Suppression of channel convection in solidifying Pb-Sn alloys via an applied magnetic field[J]. Metall. Mater. Trans., 1999, 30A: 1809
[32] Frederick R A.Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates [P]. US Pat, 5178720, 1993
[33] Sonokawa S, Hayashi T, Iwasaki A, et al.Method of manufacturing single crystal of silicon [P]. US Pat, 5882398, 1999
[34] Hoshikawa K.Czochralski silicon crystal growth in the vertical magnetic field[J]. Jpn. J. Appl. Phys., 1982, 21: L545
[35] Fusegawa I, Ohta T, Nagasawa S.Growth of single-crystal silicon semiconductor under high magnetic-field conditions[J]. Teion Kogaku, 1998, 33: 54(布施川泉, 太田友彦, 長澤繁. 強磁場中での半導体シリコン単結晶の製造[J]. 低温工学, 1998, 33: 54)
[36] Iino E, Yoshizawa K, Takano K, et al.Growth of HMCZ Si single crystals with 12" diameter[J]. J. Jpn. Assoc. Cryst. Growth, 1996, 23: 201(飯野栄一, 吉澤健, 高野清隆等. HMCZ法による12"? Si単結晶の育成[J]. 日本結晶成長学会誌, 1996, 23: 201)
[37] Wang C J, Wang Q, Wang Z Y, et al.Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field[J]. J. Cryst. Growth, 2008, 310: 1256
[38] Wang Q, Wang C J, Liu T, et al.Control of solidified structures in aluminum-silicon alloys by high magnetic fields[J]. J. Mater. Sci., 2007, 42: 10000
[39] Liu T, Wang Q, Zhang H W, et al.Effects of high magnetic fields on solidification microstructure of Al-Si alloys[J]. J. Mater. Sci., 2011, 46: 1628
[40] Oreper G M, Szekely J.The effect of a magnetic field on transport phenomena in a bridgman-stockbarger crystal growth[J]. J. Cryst. Growth, 1984, 67: 405
[41] Kim D H, Adornato P M, Brown R A.Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth[J]. J. Cryst. Growth, 1988, 89: 339
[42] Motakef S.Magnetic field elimination of convective interference with segregation during vertical-Bridgman growth of doped semiconductors[J]. J. Cryst. Growth, 1990, 104: 833
[43] Kaddeche S, Hadid H B, Henry D.Macrosegregation and convection in the horizontal Bridgman configuration II. Concentrated alloys[J]. J. Cryst. Growth, 1994, 141: 279
[44] Sampath R, Zabaras N.Numerical study of convection in the directional solidification of a binary alloy driven by the combined action of buoyancy, surface tension, and electromagnetic forces[J]. J. Comput. Phys., 2001, 168: 384
[45] Samanta D, Zabaras N.Control of macrosegregation during the solidification of alloys using magnetic fields[J]. Int. J. Heat Mass Transfer, 2006, 49: 4850
[46] Miyazaki K, Inoue H, Kinoto T, et al.Heat transfer and temperature fluctuation of lithium flowing under transverse magnetic field[J]. J. Nucl. Sci. Technol., 1986, 23: 582
[47] Kobayashi S.Effects of an external magnetic field on solute distribution in Czochralski grown crystals—A theoretical analysis[J]. J. Cryst. Growth, 1986, 75: 301
[48] Cao F, Yang F F, Kang H J, et al.Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn-50 wt%Pb alloy: An in situ observation[J]. J. Cryst. Growth, 2016, 450: 91
[49] Teimouri H, Afrand M, Sina N, et al.Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field[J]. Int. J. Appl. Electrom., 2015, 49: 453
[50] Sparrow E M, Cess R D.The effect of a magnetic field on free convection heat transfer[J]. Int. J. Heat Mass Transf., 1961, 3: 267
[51] Gel'fgat Y M, Gorbunov L A. An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields[J]. Sov. Phys. Dokl., 1989, 34: 470
[52] Wang Q, Li D G, Wang K, et al.Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface[J]. Scr. Mater., 2007, 56: 485
[53] Li D G, Wang Q, Li G J, et al.Diffusion layer growth at Zn/Cu interface under uniform and gradient high magnetic fields[J]. Mater. Sci. Eng., 2008, A495: 244
[54] Li D G, Wang Q, Liu T, et al.Growth of diffusion layers at liquid Al-solid Cu interface under uniform and gradient high magnetic field conditions[J]. Mater. Chem. Phys., 2009, 117: 504
[55] Li D G, Wang Q, Li G J, et al.High magnetic field controlled interdiffusion behavior at Bi-Bi0.4Sb0.6 liquid/solid interface[J]. J. Mater. Sci., 2009, 44: 1918
[56] Li D G.Study on the diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields [D]. Shenyang: Northeastern University, 2009(李东刚. 异质金属体系扩散行为和界面反应的强磁场控制研究 [D]. 沈阳: 东北大学, 2009)
[57] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[58] Li X, Fautrelle Y, Ren Z M.Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid[J]. Acta Mater., 2007, 55: 1377
[59] Li X, Fautrelle Y, Ren Z M, et al.Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification[J]. Acta Mater., 2009, 57: 1689
[60] Zhong H, Li C J, Ren Z M, et al.Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification[J]. J. Cryst. Growth, 2016, 439: 66
[61] Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on the origin of stray grains during directional solidification[J]. Mater. Trans., 2016, 57: 1230
[62] Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy[J]. Acta Metall. Sin., 2016, 52: 575(钟华, 李传军, 王江等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响[J]. 金属学报, 2016, 52: 575)
[63] Amano S, Iwai K, Asai S.Non-contact generation of compression waves in a liquid metal by imposing a high frequency electromagnetic field[J]. ISIJ Int., 1997, 37: 962
[64] Wang Q, He J C, Iwai K, et al.A study of the characteristics of the magnetic acoustic wave propagating in a strong magnetic field[J]. Prog. Nat. Sci., 2002, 12: 1026(王强, 赫冀成, 岩井一彦等. 在强磁场中传播的磁声波的特性研究[J]. 自然科学进展, 2002, 12: 1026)
[65] Wang Q, He J C, Iwai K, et al.Generation of electromagnetic ultrasonic waves in liquid metal under high frequency electromagnetic forces[J]. Mater. Sci. Technol., 2003, 11: 14(王强, 赫冀成, 岩井一彦等. 高频电磁力作用下金属液内电磁超声波的生成[J]. 材料科学与工艺, 2003, 11: 14)
[66] Wang Q, He J C, Kawai S, et al.Direct generation of intense compression waves in molten metals by using a high static magnetic field and their application[J]. J. Mater. Sci. Technol., 2003, 19: 5
[67] Chen Q W.Magnetic Chemistry and Materials Synthesis [M]. Beijing: Higher Education Press, 2012: 26(陈乾旺. 磁化学与材料合成 [M]. 高等教育出版社, 2012: 26)
[68] Liu T, Wang Q, Gao A, et al.Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients[J]. Scr. Mater., 2007, 57: 992
[69] Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Berlin, Heidelberg: Springer, 2002: 117
[70] Boos A, Lamparter P, Steeb S.Nahordnung in bin?ren schmelzen und mischkristallen/short range order in binary melts and binary solid solubilities[J]. Z. Naturforsch., 1977, 32A: 1222
[71] Zu F Q, Zhu Z G, Guo L J, et al.Observation of an anomalous discontinuous liquid-structure change with temperature[J]. Phys. Rev. Lett., 2002, 89: 125505
[72] Klein S, Holland-Moritz D, Herlach D M, et al.Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments[J]. Europhys. Lett., 2013, 102: 36001
[73] Liu T, Wang Q, Hirota N, et al.In situ control of the distributions of alloying elements in alloys in liquid state using high magnetic field gradients[J]. J. Cryst. Growth, 2011, 335: 121
[74] Wu M X, Liu T, Dong M, et al.Directional solidification of Al-8wt.%Fe alloy under high magnetic field gradient[J]. J. Appl. Phys., 2017, 121: 064901
[75] Mikelson A E, Karklin Y K.Control of crystallization processes by means of magnetic fields[J]. J. Cryst. Growth, 1981, 52: 524
[76] Liu T, Wang Q, Zhang C, et al.Formation of chainlike structures in an Mn-89.7wt.%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field[J]. J. Mater. Res., 2009, 24: 2321
[77] Lou C S, Wang Q, Liu T, et al.Effects of a high magnetic field on the coarsening of MnBi grains solidified from isothermal annealed semi-solid melt[J]. J. Alloys Compd., 2010, 505: 96
[78] Ma Y W, Wang Z T. To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field [J]. Physica, 1997, 282-287C: 2619
[79] Chen K, Maheswaran B, Liu Y P, et al.Critical current enhancement in field-oriented YBa2Cu3O7-δ[J]. Appl. Phys. Lett., 1989, 55: 289
[80] Farrell D E, Chandrasekhar B S, De Guire M R, et al. Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ[J]. Phys. Rev., 1987, 36B: 4025
[81] Stassen S, Cloots R, Vanderbemden P, et al.Magnetic alignment in 2212 Bi-based superconducting system: Part I. Magnetic orientation of Bi2Sr2Ca1-x(RE)xCu2O8-y [(RE)=Gd, Dy, Ho, Er] powder dispersed in epoxy resin at room temperature[J]. J. Mater. Res., 1996, 11: 1082
[82] Tkaczyk J E, Lay K W.Effect of grain alignment and processing temperature on critical currents in YBa2Cu3O7-δ sintered compacts[J]. J. Mater. Res., 1990, 5: 1368
[83] Legrand B A, Chateigner D, De La Bathie R P, et al. Orientation of samarium-cobalt compounds by solidification in a magnetic field [J]. J. Alloys Compd., 1998, 275-277: 660
[84] Wang Q, Liu Y, Liu T, et al.Magnetostriction of TbFe2-based alloy treated in a semi-solid state with a high magnetic field[J]. Appl. Phys. Lett., 2012, 101: 132406
[85] Suresh S.Graded materials for resistance to contact deformation and damage[J]. Science, 2001, 292: 2447
[86] Bever M B, Duwez P E.Gradients in composite materials[J]. Mater. Sci. Eng., 1972, 10: 1
[87] Wang Q, Liu T, Gao A, et al.A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient[J]. Scr. Mater., 2007, 56: 1087
[88] Wagne C N J. Liquid Metals[M]. New York: Marcel Dekker, 1972: 461
[89] Steinberg D J.A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures[J]. Metall. Trans., 1974, 5: 1341
[90] Liu T, Wang Q, Gao A, et al.Distribution of alloying elements and the corresponding structural evolution of Mn-Sb alloys in high magnetic field gradients[J]. J. Mater. Res., 2010, 25: 1718
[91] Gao P F, Liu T, Dong M, et al.Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification[J]. Funct. Mater. Lett., 2016, 9: 1650003
[92] Dong M, Liu T, Liao J, et al.In situ preparation of symmetrically graded microstructures by solidification in high-gradient magnetic field after melt and partial-melt processes[J]. J. Alloys Compd., 2016, 689: 1020
[93] Clark A E, Cullen J R, Sato K.Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds[J]. AIP Conf. Proc., 1975, 24: 670
[94] Clark A E, Wun-Fogle M.Modern magnetostrictive materials: Classical and nonclassical alloys [A]. Proceedings of SPIE Volume 4699, Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics[C]. San Diego, California: SPIE, 2002, 4699: 421
[95] Savitsky E M, Torchinova R S, Turanov S A.Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys[J]. J. Cryst. Growth, 1981, 52: 519
[96] Beaugnon E, Bourgault D, Braithwaite D, et al.Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation[J]. J. Phys. I France, 1993, 3: 399
[97] Gaucherand F, Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys [J]. Physica, 2004, 346-347B: 262
[98] Gaucherand F, Beaugnon E. Magnetic susceptibility of high-Curie-temperature alloys near their melting point [J]. Physica, 2001, 294-295B: 96
[99] Wang Q, Lou C S, Liu T, et al.Fabrication of MnBi/Bi composite using dilute master alloy solidification under high magnetic field gradients[J]. J. Phys., 2009, 42D: 025001
[100] Liu T, Liu Y, Wang Q, et al.Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field[J]. J. Phys., 2013, 46D: 125005
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[9] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[10] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[14] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[15] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
No Suggested Reading articles found!