Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 202-211    DOI: 10.3724/SP.J.1037.2013.00604
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS
PENG Xiao(), WANG Fuhui
State Key Laboratory for Corrosion and Protection, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

PENG Xiao, WANG Fuhui. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS. Acta Metall Sin, 2014, 50(2): 202-211.

Download:  HTML  PDF(4276KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Some structural metallic materials, with only necessary to?be?“nanocrystallized” rather than to be increased with the contents of Cr and Al, have the ability to thermally grow a protective scale of Cr2O3 and Al2O3 at high temperature environments. Nanocrystallizationof alloys containing Cr or/and Al is an alternative to conventionally coating them with a high-Cr or/and high-Al material. High temperature corrosion behaviors of nanocrystalline metallic materials have been extensively reported in the past 20 years. In this paper, characteristics of high temperature corrosion of nanocrystalline metals, together with the fundamental reasons and questions desired to be clarified for the improvement of the corrosion resistance of alloys by nanocrystallization, were briefly reviewed.

Key words:  nanocrystalline      alloy      high temperature corrosion      selective oxidation      adhesion     
Received:  22 September 2013     
ZTFLH:  TG172.5  
Fund: Support by National Natural Science Foundation of China (No.51271189)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00604     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/202

Fig.1  

发生选择性氧化所需的Cr或Al临界含量随晶粒度的变化关系

Fig.2  

Ni-Cr双相金属材料的选择性氧化过程示意图[19]

Fig.3  

Ni-10Cr双相金属材料在空气中900 ℃氧化15 min后的截面TEM形貌及相应的元素分布图

Fig.4  

K52粗晶合金和纳米晶合金空气中1000 ℃氧化100 h后的截面形貌[35]

Fig.5  

Ni-25Cr-5Al-1S粗晶和纳米晶合金在空气中1000 ℃和304不锈钢及其纳米晶化后在900 ℃的氧化动力学曲线

Fig.6  

304不锈钢及其纳米晶化后在含40%水蒸气的空气中在不同温度的氧化动力学曲线[39]

Fig.7  

Ni-25Cr-5Al-1S粗晶合金及其纳米晶化后在空气中1000 ℃氧化20 h后的截面TEM形貌及相应的元素分布图[47]

Fig.8  

Ni-25Cr-5Al-1S粗晶合金及其纳米晶化后在真空中1000 ℃退火1 h后的表面S的XPS分析结果[47]

Fig.9  

粗晶Ni3Al空气中900 ℃循环氧化5次后的表面和截面形貌[38]

Fig.10  

粗晶Ni3Al空气中900 ℃循环氧化5次后的截面形貌[38]

Fig.11  

超细晶Ni3Al空气中900 ℃循环氧化100次后的截面形貌[38]

[1] Kofstad P. High Temperature Corrosion. London: Elsevier Applied Science, 1988: 1
[2] Nicholls J R, Simms N J, Chan W Y, Evans H E. Surf Coat Technol, 2002; 149: 236
[3] Peng X. In: Xu H, Guo H eds., Thermal Barrier Coatings. Cambridge, England: Woodhead Pub. Ltd., 2011: 53
[4] Kelly F C. Trans Electrochem Soc, 1923; 43: 351
[5] Samuel R L, Lockidngton N A. Met Treatment Drop Forging, 1951; 18: 354
[6] Drewett R. Anti-Corros Methods Mater, 1969; 16: 543
[7] Goward G W. Surf Coat Technol, 1998; 108-109: 73
[8] Geib F D, Rapp R A. Oxid Met, 1993; 40: 213
[9] Nicholls J R, Hancock P, Al Yasiri L H. Mater Sci Technol, 1989; 5: 799
[10] Evans D J, Elam R C. US Patent, 3.676.085, 1972
[11] Ajdelsztajn L, Picas J A, Kim G E, Bastian F L, Schoenung J, Provenzano V. Mater Sci Eng, 2002; A338: 33
[12] Giggins C S, Pettit F S. Trans TMS-AIME, 1969; 245: 2509
[13] Wang F, Lou H. Mater Sci Eng, 1990; A43: 279
[14] Peng X, Wang F. In: Gao W, Li Z eds., Developments in High-temperature Corrosion and Protection of Materials. Cambridge, England: Woodhead Pub. Ltd., 2009: 456
[15] Umemote M, Todaka Y, Tsuchiya K. Mater Trans, 2003; 44: 1488
[16] Tao N R, Sui M L, Lu J, Lu K. Nanostruct Mater, 1999; 11: 4
[17] Tong W P, Tao N R, Wang Z B, Lu J, Lu K. Science, 2003; 229: 686
[18] Yavari A R. Mater Trans, 1995; 36: 228
[19] Peng X. Nanoscale, 2010; 2: 262
[20] Zhang Y, Peng X, Wang F H. Mater Lett, 2004; 58: 1134
[21] Zhou Y, Peng X, Wang F H. Scr Mater, 2004; 50: 1429
[22] Zhang C, Peng X, Zhao J, Wang F H. J Electrochem Soc, 2005; 152: B321
[23] Douglass D L. Corros Sci, 1968; 8: 665
[24] Chen G F, Lou H Y. Mater Lett, 2002; 45: 286
[25] Singh R R K, Khanna A S, Tiwari R K, Gnanamoorttsy J B. Oxid Met, 1992; 37: 1
[26] Singh R R K, Gnanamoorttsy J B. Oxid Met, 1992; 38: 483
[27] Singh R R K, Gnanamoorttsy J B, Roy S K. Oxid Met, 1994; 42: 335
[28] Wagner C Z. Elektrochem, 1959; 63: 772
[29] Liu Z, Gao W, Dahm K L, Wang F. Acta Mater, 1998; 46: 1691
[30] Peng X, Wang F H. Corros Sci, 2003; 45: 2293
[31] Dong Z, Peng X, Guan Y, Li L, Wang F H. Corros Sci, 2012; 62: 147
[32] Huang Z, Peng X, Xu C, Wang F H. J Mater Res, 2007; 22: 3166
[33] Huang Z, Peng X, Xu C, Wang F H. J Electrochem Soc, 2009; 156: C95
[34] Wang F H, Tian X, Li Q, Li L, Peng X. Thin Solid Films, 2008; 516: 5740
[35] Yang X, Peng X, Wang F H. J Electrochem Soc, 2009; 156: C167
[36] Wagner C. J Electrochem Soc, 1952; 99: 369
[37] Lou H, Zhu S, Wang F H. Oxid Met, 1995; 43: 317
[38] Peng X, Li M, Wang F H. Corros Sci, 2011; 53: 1616
[39] Peng X, Yan J, Zhou Y, Wang F H. Acta Mater, 2005; 53: 5079
[40] Geng S, Eang F, Zhu S, Wu W. Oxid Met, 2002; 57: 549
[41] Yang X, Peng X, Wang F H. Scr Mater, 2007; 56: 891
[42] Wang F, Lou H, Zhu S, Wu W. Oxid Met, 1996; 45: 39
[43] Yang S, Wang F, Sun Z, Zhu S. Intermetallics, 2002; 10: 467
[44] Funkenbush A M, Smeggil J G, Smeggil N S. Metall Trans, 1985; 16A: 1164
[45] Lees D G. Oxid Met,1987; 27: 75
[46] Hou P Y. Annu Rev Mater Res, 2008; 38: 275
[47] Li Q, Peng X, Zhang J Q, Zong G X, Wang F H. Corros Sci, 2010; 52: 1213
[48] Evans A G, Crymley G B, Demaray R E. Oxid Met, 1983; 20: 193
[49] Suo Z. J Mech Phys Solids, 1995; 43: 829
[50] Christensen R J, Lipkin D M, Clarke D R. Acta Mater, 1996; 44: 3813
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[11] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[12] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[13] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[14] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!