Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (4): 473-482    DOI: 10.11900/0412.1961.2014.00496
Current Issue | Archive | Adv Search |
TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD
ZHONG Hua1, REN Zhongming1, LI Chuanjun1, ZHONG Yunbo1, XUAN Weidong1, WANG Qiuliang2
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072; 2 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
Download:  HTML  PDF(12586KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Directional solidification of Al-4.5Cu alloy refined by adding Al-5Ti-1B has been carried out to investigate the texture formation and grain boundary characteristic of the paramagnetic crystal under a high magnetic field. OM and EBSD were applied to analyze the microstructures solidified at different temperature gradients (G) and magnetic field intensities (B). The results show that at the temperature gradient of 27 K/cm, the orientations of fcc a-Al grains without magnetic field are random. However, as a high magnetic field is imposed, the easy magnetization axes 〈310〉 of the a-Al grains are aligned parallel to the direction of the magnetic field leading to 〈310〉 texture. Meanwhile, the ratio of coincidence site lattice (CSL) grain boundaries increases with the increment of magnetic field intensity and reaches its maximum value at 4 T, but decreases as the magnetic field enhances further. On the other hand, when the temperature gradient is elevated, columnar dendrite morphology is exhibited without magnetic field; while a 6 T high magnetic field is introduced, the columnar dendrites are broken and equiaxed grains of random orientations are obtained. The alignment behavior of the free crystals in melt could be attributed to the magnetic crystalline anisotropy of a-Al. Moreover, the influence of fluid flow on the texture formation and CSL grain boundary development under magnetic field is discussed. The absence of convection is benefit for grain reorientation and CSL boundary formation. The application of high static magnetic field will inhibit the macro-scale convection. However, the interaction between thermoelectric current and magnetic field will cause micro-scale fluid flow, i.e., thermoelectric magnetic convection (TEMC). The TEMC will give rise to perturbation near the solid-liquid interface leading to the appearance of freckles as well as the decreasing of the ratio of CSL boundary. Moreover, it is proposed that the formation of CSL boundary is associated with the rotation of the free grains in melt along specific crystallographic axes by magnetic torque.
Key words:  high magnetic field      Al-4.5Cu alloy      Al-5Ti-1B refinement      directional solidification      orientation      grain boundary characteristic     
ZTFLH:  TG146  
Fund: ; Supported by National Basic Research Program of China (No.2011CB010404), National Natural Science Foundation of China (Nos.51404148 and 51401116) and Ministry of Major Science & Technology of Shanghai (Nos.13DZ1108200, 13521101102 and 14521102900)
Corresponding Authors:  Correspondent: REN Zhongming, professor, Tel: (021)56331102, E-mail: renzm2201@163.com     E-mail:  renzm2201@163.com

Cite this article: 

ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD. Acta Metall Sin, 2015, 51(4): 473-482.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00496     OR     https://www.ams.org.cn/EN/Y2015/V51/I4/473

  Quenched longitudinal microstructures near the solid/liquid interface of refined Al-4.5Cu alloys directionally solidified without (a) and with magnetic fields of B=2 T (b), B=4 T (c) and B=6 T (d) under temperature gradient of G=27 K/cm and pulling rate of 10 mm/s (The dashed lines show solid/liquid interfaces)
  Quenched longitudinal microstructures near the solid/liquid interface of refined Al-4.5Cu alloys directionally solidified at B=0 T, G=65 K/cm (a), B=6 T, G=65 K/cm (b), B=0 T, G=101 K/cm (c) and B=6 T, G=101 K/cm (d)
  EBSD false color maps of the transverse microstructures in the steady-state growth portion of refined Al-4.5Cu alloys directionally solidified without (a) and with magnetic fields of B=2 T (b), B=4 T (c) and B=6 T (d) under G=27 K/cm
  EBSD false color maps of the transverse microstructures in the steady-state growth portion of refined Al-4.5Cu alloys directionally solidified at B=0 T, G=65 K/cm (a), B=6 T, G=65 K/cm (b), B=0 T, G=101 K/cm (c) and B=6 T, G=101 K/cm (d)
  Inverse pole figures (IPFs) of transverse microstructures in the steady-state growth portion of refined Al-4.5Cu alloys directionally solidified without (a) and with magnetic fields of B=2 T (b), B=4 T (c) and B=6 T (d) under G=27 K/cm (The direction of the IPFs refers to the magnetic field direction and the colored spots in the region of the dashed semicircle indicats the grains orientated close to 〈310〉 direction)
  IPFs of transverse microstructures in the steady-state growth portion of refined Al-4.5Cu alloys directionally solidified at B=0 T, G=65 K/cm (a), B=6 T, G=65 K/cm (b), B=0 T, G=101 K/cm (c) and B=6 T, G=101 K/cm (d) (The direction of the IPFs refers to the magnetic field direction and the colored spots in the region of the dashed semicircle indicates the grains orientated close to 〈310〉 direction)
  Grain boundary characteristic maps of transverse microstructures in the steady-state growth portion of refined Al-4.5Cu alloys directionally solidified without (a) and with magnetic fields of B=2 T (b), B=4 T (c) and B=6 T (d) under G=27 K/cm (The colored lines represent the coincidence site lattice (CSL) boundaries)
  Schematic of alignment of a-Al crystal under magnetic field
(a) magnetic torque caused by the magnetic anisotropy of the crystal
(b) process of rotation and re-orientation when the magnetic field is applied
[1] Engler O, Randle V. Introduction to Texture Analysis. Boca Raton: CRC Press, 2010: 8
[2] Saha R, Ray R K. Mater Sci Eng, 2010; A527: 1882
[3] Suresh K S, Kim D I, Bhaumik S K, Suwas S. Scr Mater, 2012; 66: 602
[4] Chen Y, Li J, Tang B, Kou H, Zhang F, Chang H, Zhou L. Mater Lett, 2013; 98: 254
[5] Kobayashi S, Takagi H, Watanabe T. Philos Mag, 2013; 93: 1425
[6] Garbacz A, Grabski M W. Acta Metall Mater, 1993; 41: 469
[7] Randle V. Mater Sci Technol, 2010; 26: 253
[8] Molodov D A, Konijnenberg P J. Scr Mater, 2006; 56: 977
[9] Watanabe T, Tsurekawa S, Zhao X, Zuo L. Scr Mater, 2006; 54: 969
[10] Ren Z M. Mater China, 2010; 29(6): 40 (任忠鸣. 中国材料进展, 2010; 29(6): 40)
[11] Ban C Y, Chen D D, Han Y, Ba Q X, Cui J Z. Acta Metall Sin, 2008; 44: 1224 (班春燕, 陈丹丹, 韩 逸, 巴启先, 崔建忠. 金属学报, 2008; 44: 1224)
[12] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219) (左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)
[13] Shen Y, Ren Z M, Li X, Ren W L. Acta Metall Sin, 2011; 47: 417 (沈 裕, 任忠鸣, 李 喜, 任维丽. 金属学报, 2011; 47: 417)
[14] Li X, Fautrelle Y, Ren Z M, Zhang Y D, Esling C. Acta Mater, 2010; 58: 2430
[15] Li X, Ren Z M, Cao G H, Fautrelle Y, Esling C. Acta Mater, 2011; 59: 6297
[16] Watanabe T, Suzuki Y, Tanii S, Oikawa H. Philos Mag Lett, 1990; 62: 9
[17] Sun S S, Yu J B, Ren Z M, Ren W L, Deng K. Shanghai Met, 2009; 31(4): 36 (孙双双, 余建波, 任忠鸣, 任维丽, 邓 康. 上海金属, 2009; 31(4): 36)
[18] Li X, Gagnoud A, Ren Z M, Fautrelle Y, Moreau R. Acta Mater, 2009; 57: 2180
[19] Li X, Fautrelle Y, Gagnoud A, Cao G, Zhang Y D, Ren Z M, Lu X, Esling C. Philos Mag Lett, 2014; 94: 118
[20] Li X, Ren Z M, Fautrelle Y. Acta Mater, 2006; 54: 5349
[21] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46: 6431
[22] Li X, Fautrelle Y, Ren Z M. Acta Mater, 2007; 55: 3803
[23] Sun Z, Guo M, Vleugels J, Van Der Biest O, Blanpain B. Curr Opin Solid State Mater Sci, 2012; 16: 254
[24] Mikelson A E, Karklin Y K. J Cryst Growth, 1981; 52: 524
[25] Murty B S, Kori S A, Chakraborty M. Int Mater Rev, 2002; 47: 3
[26] Davies I G, Dennis J M, Hellawell A. Metall Trans, 1970; 1: 275
[27] Zhu Y M. J Instrum Mater, 1982; 13(6): 25 (朱耀明. 仪表材料, 1982; 13(6): 25)
[28] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 517 (傅恒志, 郭景杰, 刘 林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 517)
[29] Li X, Ren Z M, Ren W L, Li X, Zhong Y B, Deng K, Dong J W, Chen C. Chin J Nonferrous Met, 2010; 20: 1913 (李 旭, 任忠鸣, 任维丽, 李 喜, 钟云波, 邓 康, 董建文, 陈 超. 中国有色金属学报, 2010; 20: 1913)
[30] Davidson P A. Annu Rev Fluid Mech, 1999; 31: 273
[31] Li X, Fautrelle Y, Zaidat K, Gagnoud A, Ren Z M, Moreau R, Zhang Y D, Esling C. J Cryst Growth, 2010; 31: 267
[32] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[33] Randle V. Acta Mater, 1998; 46: 1459
[34] Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. London: Institute of Materials, Minerals and Mining, 1996: 10
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[3] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[4] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[5] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[6] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[8] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[11] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[12] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[13] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[14] XIE Guang, ZHANG Shaohua, ZHENG Wei, ZHANG Gong, SHEN Jian, LU Yuzhang, HAO Hongquan, WANG Li, LOU Langhong, ZHANG Jian. Formation and Evolution of Low Angle Grain Boundary in Large-Scale Single Crystal Superalloy Blade[J]. 金属学报, 2019, 55(12): 1527-1536.
[15] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
No Suggested Reading articles found!