Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1092-1100    DOI: 10.11900/0412.1961.2015.00083
Current Issue | Archive | Adv Search |
EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS
Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN()
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS. Acta Metall Sin, 2015, 51(9): 1092-1100.

Download:  HTML  PDF(14130KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Investigation of the relationship between microstructure and microscopic deformation behavior of dual phase steel is very important for high property dual phase steel development. In this work, step quenching (SQ) and intercritical annealing (IA) heat treatments were optimized to produce dual phase steels of similar martensite volume fraction, but with respectively isolated and continuous martensite distribution. The tensile and dynamic fracture properties of dual phase steels were investigated. Strain distribution of steels was measured by digital image correlation (DIC) method. Combined with observations of microcracks/microvoids, different deformation and fracture mechanisms were revealed. Compared to IA steel, SQ steel has lower strength, but longer elongation and higher fracture toughness, and the latter were attributed to larger deformation in ferrites that results in more stress relaxation of martensite during deformation. While in IA steel, the deformation in ferrites is blocked by adjacent martensites, so that a relatively small strain of ferrite cannot effectively relax the stress in martensites, which resulted in higher plastic deformation in martensite than in SQ steel; therefore, cracks preferentially initiate in martensite, and IA steel exhibits higher strength and lower plasticity.

Key words:  dual phase steel      microstructure      plastic deformation      step quenching      intercritical annealing      digital image correlation (DIC)     
Fund: Supported by National Basic Research Program of China (No.2012CB619600 ) and National Natural Science Foundation of China (No.51471107 )

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00083     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1092

Fig.1  Schematics of tensile sample sizes (unit: mm, R—radius)
Fig.2  Schematics of step quenching (SQ) (a) and intercritical annealing (IA) (b) heat treatments
Fig.3  OM images of SQ (a) and IA (b) dual phase (DP) steels
Fig.4  Tensile curve of IA and SQ samples
Sample σ 0.2 / MPa σ b / MPa h ? / MPa δ / %
IA 558 1006 6656 7.2
SQ 420 840 4046 10.8
Table1  Tensile properties of IA and SQ samples
Fig.5  SEM images of tensile fracture surfaces of SQ (a) and IA (b) samples
Fig.6  SEM images of impact fracture surfaces of SQ (a) and IA (b) samples
Fig.7  SEM images before deformation (a, c, e) and equivalent strain maps after fracture overlapped with corresponding SEM images of target areas on the surface of SQ sample (b, d, f) (ε-—equivalent strain. Strain concentration areas are marked with ?at phase boundaries, △ inside ferrite, ? at narrow area of ferrite between martensite and ○ inside martensite)
Fig.8  SEM images before deformation (a, c, e) and equivalent strain maps after fracture overlapped with corresponding SEM images of target areas on the surface of IA sample (b, d, f) (Strain concentration areas are marked with ? at phase boundaries, △ inside ferrite, ?at narrow area of ferrite between martensite and ○ inside martensite)
Fig.9  Histogram of equivalent strain distribution in SQ (a) and IA (b) samples
Fig.10  Backscattered electron image (BEI) (a, c, e) and secondary electron image (SEI) (b, d, f) of surface cracks near fracture of SQ (a~d) and IA (e, f) samples (? show microvoids and microcracks at phase boundaries, △ show ductile microvoids in ferrite, ??show microcracks in martensite)
[1] Rashid M. Annu Rev Mater Sci, 1981; 11(1): 245
[2] Ma M T,Wu B R. Dual Phase Steel-Physics & Mechanical Metallurgy. 2nd Ed., Beijing: Metallurgical Industry Press, 2009: 1 (马鸣图,吴宝榕. 双相钢-物理和力学冶金. 第二版 , 北京: 冶金工业出版社, 2009: 1)
[3] Tian Z Q, Tang D, Jiang H T, Ma X L, Xu H X. Mater Mech Eng, 2009; 33(4): 1 (田志强, 唐 荻, 江海涛, 马小亮, 许洪汛. 机械工程材料, 2009; 33(4): 1)
[4] Gao L,Zhou Y M,Liu J L,Shen X D,Ren Z M. In: The Chinese Society for Metals ed., Proceeding 7th China Steel Conference, Beijing: Metallurgical Industry Press, 2009: 96 (高 丽,周月明,刘俊亮,沈小丹,任忠鸣. 见: 中国金属学会主编, 第七届中国钢铁年会论文集, 北京: 冶金工业出版社, 2009: 96)
[5] Tasan C, Hoefnagels J, Geers M. Scr Mater, 2010; 62: 835
[6] Byun T S, Kim I S. J Mater Sci, 1993; 28: 2923
[7] Gerbase J, Embury J D, Hobbs R M. In: Kot R A, Morris J W eds., Structure and Properties of Dual-Phase Steels, New York: TMS-AIME, 1979: 118
[8] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658
[9] Pierman A P, Bouaziz O, Pardoen T, Jacques P J, Brassart L. Acta Mater, 2014; 73: 298
[10] Park K, Nishiyama M, Nakada N, Tsuchiyama T, Takaki S. Mater Sci Eng, 2014; A604: 135
[11] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957
[12] Ahmad E, Manzoor T, Ziai M, Hussain N. J Mater Eng Perform, 2012; 21: 382
[13] Su Y, Gurland J. Mater Sci Eng, 1987; 95: 151
[14] Han Q, Kang Y, Hodgson P D, Stanford N. Scr Mater, 2013; 69: 13
[15] Kim N, Thomas G. Metall Trans, 1981; 12A: 483
[16] Xu Y Y, Deng J, Ge H Q, Shen Y. Mater Mech Eng, 2015; 39(6): 40 (许以阳, 邓 洁, 葛涵清, 沈 耀. 机械工程材料, 2015; 39(6): 40)
[17] Sutton M A, Orteu J J, Schreier H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. New York: Springer-Verlag US, 2009: 119
[18] Pan B, Qian K, Xie H, Asundi A. Meas Sci Technol, 2009; 20(6): 1
[19] Kang J, Ososkov Y, Embury J D, Wilkinson D S. Scr Mater, 2007; 56: 999
[20] Kang J, Jain M, Wilkinson D S, Embury J D. J Strain Anal Eng Des, 2005; 40: 559
[21] Joo S H, Lee J K, Koo J M, Lee S, Suh D W, Kim H S. Scr Mater, 2013; 68: 245
[22] Heat Treatment Manual Editorial Committee in Heat Treatment Institute of Chinese Mechanical Engineering Society. Heat Treatment Manual (Vol.1). 3rd Ed., Beijing: China Machine Press, 2001: 131 (中国机械工程学会热处理专业学会《热处理手册》编委会.热处理手册(第一卷)工业基础. 第三版, 北京: 机械工业出版社, 2001: 131
[23] Bag A, Ray K K, Dwarakadasa E S. Metall Mater Trans, 1999; 30A: 1193
[24] Ghadbeigi H, Pinna C, Celotto S, Yates J. Mater Sci Eng, 2010; A527: 5026
[25] Shen H, Lei T, Liu J. Mater Sci Technol, 1986; 2(1): 28
[26] Woo W, Em V, Kim E Y, Han S, Han Y, Choi S H. Acta Mater, 2012; 60: 6972
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!