Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1085-1091    DOI: 10.11900/0412.1961.2015.00044
Current Issue | Archive | Adv Search |
EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL
Yulai CHEN1,Zhaoyin LUO2,Jingyuan LI2()
1 Metallurgical Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

Yulai CHEN,Zhaoyin LUO,Jingyuan LI. EFFECT OF SOLUTION TEMPERATURE ON MICRO- STRUCTURE AND PITTING CORROSION RESISTANCE OF S32760 DUPLEX STAINLESS STEEL. Acta Metall Sin, 2015, 51(9): 1085-1091.

Download:  HTML  PDF(6431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to obtain the optimal corrosion resistance, the characteristics of microstructure and alloy elements distribution of S32760 duplex stainless steel were studied after solid solution treatment at various temperatures from 1000 ℃ to 1300 ℃ by means of OM, EPMA, SEM, EDS and TEM. In addition, the pitting corrosion resistance was measured by the electrochemical workstation. The results show that the N atoms diffused into d phase from g phase during solution treatment when the temperature was higher than 1080 ℃. N atoms migrated back into g phase when the subsequent cooling was slow enough. However, Cr2N phase in situ precipitated during quenching because there was not enough time for the N atoms to diffuse back into g phase. Cr2N particles increased with the solution temperature increasing. Furthermore, s phase precipitated when the tested sheet was heat treated at or below 1040 ℃ due to the high content of N. Thus it is obvious that the solution temperature range of the S32750 duplex stainless steel is quite narrow, which is between 1040 ℃ and 1080 ℃, and it is confirmed that the optimal temperature is 1060 ℃. After treated at 1060 ℃ for 60 min, the Brinell hardness of S32760 steel is 249 HBW, pitting potential is up to 1068 mV and the passive current density is as low as 1.48×10-4 A/cm2.

Key words:  duplex stainless steel      solution treatment      precipitation      corrosion resistance     
Fund: Supported by National Natural Science Foundation of China (No.51174026), National Science and Technology Pillar Program of the Twelfth Five-Year Plan (No.2012BAE04-B02)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00044     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1085

Steel C Cr Ni Mo N W Cu Mn Si S P Fe
ASTM A789 ≤0.030 24.0~26.0 6.0~8.0 3.0~4.0 0.20~0.30 0.50~1.00 0.50~1.00 ≤1.00 ≤1.00 ≤0.010 ≤0.030 Bal.
S32760 steel 0.014 25.11 6.93 3.51 0.253 0.69 0.69 0.77 0.52 0.001 0.028 Bal.
Table 1  Chemical compositions of S32760 duplex stainless steel and ASTM A789
Fig.1  OM images of S32760 duplex stainless steel after solution treatment at various temperatures for 60 min

(a) 1000 ℃ (b) 1050 ℃ (c) 1100 ℃ (d) 1150 ℃ (e) 1200 ℃ (f) 1250 ℃ (g) 1300 ℃

(h) furnace cooling from 1300 ℃ to 1100 ℃ and then water cooling

(i) 1100 ℃ and then air cooling

Fig.2  SEM image (a) and EPMA mapping of elements (b~f) in S32760 duplex stainless steel after treatment at 1000 ℃ for 60 min
Fig.3  SEM images of samples after heat treatment at 1000 ℃ (a) and 1300 ℃ (b)
Fig.4  TEM image (a) and SAED pattern (b) of S32760 duplex stainless steel after solution treatment at 1250 ℃
Point Mass fraction / % Phase
Cr Mo Ni
1 22.04 2.64 7.99 g
2 21.67 2.50 10.64 g
3 25.23 3.79 4.26 d
4 20.33 2.14 8.26 g
5 19.76 2.17 7.69 g
6 19.68 2.30 7.68 g
  
Fig.5  OM images of S32760 duplex stainless steel after heat treatment at 1040 ℃ (a), 1060 ℃ (b) and 1080 ℃ (c) for 60 min (Inset in Fig.5a show the high magnified image)
Fig.6  Polarization curves of S32760 duplex stainless steel after solution treatment at various temperatures (Eb—pitting potential, i—passive current density)
Fig.7  Pitting potential (Eb) and passive current density (i) of S32760 duplex stainless steel after solution treatment at various temperatures
[1] Gurrappa I, Krishna Reddy C V. J Mater Process Technol, 2007; 182: 195
[2] Huang C S, Shih C C. Mater Sci Eng, 2005; A402: 66
[3] Migiakis K, Daniolos N, Papadimitriou G D. Mater Manuf Processes, 2010; 25: 598
[4] Sun X G. Shanxi Metall, 2013; (3): 6 (孙晓刚. 山西冶金, 2013; (3): 6)
[5] Wu J. Duplex Stainless Steel. Beijing: Metallurgy Industry Press, 1999: 8 (吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 8)
[6] Yang S M, Chen Y C, Chen C H, Huang W P, Lin D Y. J Alloys Compd, 2015; 633: 48
[7] Fargas G, Anglada M, Mateo A. J Mater Process Technol, 2009; 209: 1770
[8] Bettini E, Kivis?kk U, Leygraf C, Pan J. Electrochim Acta, 2013; 113: 280
[9] Du J, Wang C, Wang K, Chen K. Intermetallics, 2014; 45: 80
[10] Chen X H, Ren X P, Xu H, Tong J G, Zhang H Y. Int J Min Met Mater, 2012; 19: 518
[11] Zanotto F, Grassi V, Merlin M, Balbo A, Zucchi F. Corros Sci, 2015; 94: 38
[12] Lacerda J C, Candido L C, Godefroid L B. Int J Fatigue, 2015; 74: 81
[13] Migiakis K, Papadimitriou G D. J Mater Sci, 2009; 44: 6372
[14] Elsabbagh F M, Hamouda R M, Taha M A. J Mater Eng Perform, 2014; 23: 275
[15] Xiang H L, He F S, Liu D. Acta Metall Sin, 2009; 45: 1456 (向红亮, 何福善, 刘 东. 金属学报, 2009; 45: 1456)
[16] Udayakumar T, Raja K, Afsal Husain T M, Sathiya P. Mater Des, 2014; 53: 226
[17] de Messano L V R, Sathler L, Reznik L Y, Coutinho R. Int Biodeter Biodegr, 2009; 63: 607
[18] Chen W, Wang X Y, Wang D Y, Zhang H G. Heat Treat, 2013; (3): 45 (陈 炜, 王晓燕, 王冬颖, 张会国. 热处理, 2013; (3): 45)
[19] Yan K R. Metall Collections, 1994; (1): 28 (颜宽然. 冶金丛刊, 1994; (1): 28)
[20] Li R S, Wang Z Y. Acta Metall Sin, 1994; 30: 477 (李仁顺, 王佐义. 金属学报, 1994; 30: 477)
[21] Xiang H L, Huang W L, Liu D, He F S. Acta Metall Sin, 2010; 46: 304 (向红亮, 黄伟林, 刘 东, 何福善. 金属学报, 2010; 46: 304)
[22] Garfias-Mesias L F, Sykes J M, Tuck C D S. Corros Sci, 1996; 38: 1319
[23] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 7 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 7)
[24] Zhao J L, Xiao X S, Xu M H, Fang J X, Li J, Li M. Shanghai Steel Iron Res, 2006; (3): 33 (赵钧良, 肖学山, 徐明华, 方静贤, 李 钧, 李 明. 上海钢研, 2006; (3): 33)
[25] Comer A, Looney L. Int J Fatigue, 2006; 28: 826
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[6] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[8] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[11] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[12] SUN Shijie, TIAN Yanzhong, ZHANG Zhefeng. Strengthening and Toughening Mechanisms of Precipitation- Hardened Fe53Mn15Ni15Cr10Al4Ti2C1 High-Entropy Alloy[J]. 金属学报, 2022, 58(1): 54-66.
[13] XUE Kemin, SHENG Jie, YAN Siliang, TIAN Wenchun, LI Ping. Influence of Precipitation of China Low Activation Martensitic Steel on Its Mechanical Properties After Groove Pressing[J]. 金属学报, 2021, 57(7): 903-912.
[14] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[15] XU Kun, WANG Haichuan, KONG Hui, WU Zhaoyang, ZHANG Zhan. Precipitation Kinetics of Al3Sc in Aluminum Alloys Modeled with a New Grouping Cluster Dynamics Model[J]. 金属学报, 2021, 57(6): 822-830.
No Suggested Reading articles found!