Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1101-1110    DOI: 10.11900/0412.1961.2015.00039
Current Issue | Archive | Adv Search |
HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT
Timing ZHANG,Yong WANG,Weimin ZHAO(),Xiuyan TANG,Tianhai DU,Min YANG
College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580
Cite this article: 

Timing ZHANG,Yong WANG,Weimin ZHAO,Xiuyan TANG,Tianhai DU,Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT. Acta Metall Sin, 2015, 51(9): 1101-1110.

Download:  HTML  PDF(9595KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hydrogen gas is usually included in coal gas environment, so hydrogen induced permeation would happen to pipeline, especially in welding heat affected zone (HAZ). Hydrogen permeation process in pipeline is the preconditions for the following hydrogen embrittlement failure. With the development of coal gas industry, the basic research to the hydrogen permeation behavior in pipeline under coal gas circumstance is still unfortunately lack and urgently needed to supplement. In this work, X80 pipeline steel was used, and the HAZ samples, including intercritical heat affected zone (ICHAZ), fine grained heat affected zone (FGHAZ) and coarse grained heat affected zone (CGHAZ), were experimentally simulated using a Gleeble 3500 simulator. Next, hydrogen permeation tests were conducted on X80 pipeline steel and HAZs in coal gas environment. Calculated results indicated that the hydrogen diffusion coefficient increased with the rise of peak temperature in HAZs, but it was opposite to other parameters, such as sub-surface hydrogen concentration, hydrogen solubility and hydrogen trap density. The mechanism of the difference in HAZ hydrogen permeation parameters was analyzed combined with OM, EBSD and TEM analysis. It turned out that the content of large-angle grain boundaries, the grain boundary straightness and dislocation density were the main factors, where the large-angle grain boundaries and dislocations could dramatically arrest hydrogen atoms while the straight grain boundaries may act as hydrogen diffusion path. For FGHAZ, the straight grain boundary and low dislocation density compared with matrix played the predominant role in hydrogen diffusion process, and thus the hydrogen diffusion coefficient increased compared with steel substrate. For ICHAZ and CGHAZ, the decrease of large-angle grain boundaries and dislocation density acted as the main factor, especially for CGHAZ, the microstructures was mainly composed of tabular bainite ferrite (BF) with large grain size and straight grain boundaries because of the highest peak temperature, and the content of large-angle grain boundaries decreased obviously. In comparation with other regions, CGHAZ had the highest hydrogen diffusion coefficient and the lowest hydrogen trap density and hydrogen solubility.

Key words:  coal gas      X80 pipeline steel      heat affected zone (HAZ)      microstructure      hydrogen permeation     
Fund: Supported by Fundamental Research Funds for the Central Universities (Nos.14CX05020A and 14CX06120A) and Natural Science Foundation of Shandong Province (No.ZR2013EEL023)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00039     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1101

Fig.1  Weld thermal cycle curves monitored in the simulated welding process (ICHAZ—intercritical heat affected zone, FGHAZ—fine grained heat affected zone, CGHAZ—coarse grained heat affected zone)
Fig.2  Diagram for high pressure hydrogen permeation device
Fig.3  Microstructures of X80 steel (a), ICHAZ (b), FGHAZ (c) and CGHAZ (d) (AF—acicular ferrite, MF—massive ferrite, GB—granular bainitic, PF—polygonal ferrite, BF—bainitic ferrite)
Fig.4  Hydrogen permeation curves of X80 steel and different sub-regions of heat affected zone (HAZ)
Sample i / (10-6 Acm-2) D / (10-6 cm2s-1) C0 / (10-6 molcm-3) S / (10-10 molcm-3Pa-1/2) NT / (10-6 molcm-3)
X80 0.292 3.302 0.183 3.734 2.304
ICHAZ 0.313 4.138 0.157 3.196 1.566
FGHAZ 0.329 4.990 0.137 2.785 1.126
CGHAZ 0.353 5.477 0.133 2.722 0.992
Table 1  Hydrogen permeation parameters of X80 steel and different sub-regions of HAZ
Fig.5  Analysis of the hydrogen permeation current transient of X80 steel (a), ICHAZ (b), FGHAZ (c) and CGHAZ (d) by Fourier method (K—slope of the fitted curve)
Fig.6  Orientation maps of bcc phase in X80 steel (a), ICHAZ (b), FGHAZ (c), CGHAZ (d) and inverse pole figure (IPF) (e)
Fig.7  Misorientation angle distributions of X80 steel and different sub-regions of HAZ
Fig.8  TEM images of X80 steel (a), ICHAZ (b), FGHAZ (c) and CGHAZ (d)
[1] Nie W J, Shang C J, You Y, Zhang X B, Sundarese S. Acta Metall Sin, 2012; 48: 797 (聂文金, 尚成嘉, 由 洋, 张晓兵, Sundarese S. 金属学报, 2012; 48: 797)
[2] Meliani M H, Azari Z, Matvienko Y G, Pluvinage G. Proc Eng, 2011; 10: 942
[3] Somerday B P, Sofronis P, Nibur K A, Marchi C S, Kirchheim R. Acta Mater, 2013; 61: 6153
[4] Zhu M, Liu Z Y, Du C W, Li X G, Li J K, Li Q, Jia J H. Acta Metall Sin, 2013; 49: 1590 (朱 敏, 刘智勇, 杜翠薇, 李晓刚, 李建宽, 李 琼, 贾静焕. 金属学报, 2013; 49: 1590)
[5] Li X F, Wang Y F, Zhang P, Li B, Song X L, Chen J. Mater Sci Eng, 2014; A616: 116
[6] Zhu X, Li W, Hsu T Y, Zhou S, Wang L, Jin X J. Scr Mater, 2015; 97: 21
[7] Sun Y W, Chen J Z, Liu J. Mater Sci Eng, 2015; A625: 89
[8] Dodds P E, Demoullin S. Int J Hydrogen Energy, 2013; 38: 7189
[9] Haeseldonckx D, Djaeseleer W. Int J Hydrogen Energy, 2007; 32: 1381
[10] Liu Y, Li Y, Li Q. Acta Metall Sin, 2013; 49: 1089 (刘 玉, 李 焰, 李 强. 金属学报, 2013; 49: 1089)
[11] Fan L, Liu Z Y, Du C W, Li X G. Acta Metall Sin, 2013; 49: 689 (范 林, 刘智勇, 杜翠薇, 李晓刚. 金属学报, 2013; 49: 689)
[12] Esaklul K A, Ahmed T M. Eng Fail Anal, 2009; 16: 1195
[13] Capelle J, Gilgert J, Dmytrakh I, Plubinage G. Int J Hydrogen Energy, 2008; 33: 7630
[14] Yang Z. Master Thesis, Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 2004 (杨 洲. 中国科学院海洋研究所硕士学位论文, 青岛, 2004)
[15] Briottet L, Batisse R, Dinechin G, Langlois P, Thiers L. Int J Hydrogen Energy, 2012; 37: 9423
[16] Nanninga N E, Levy Y S, Drexler E S, Condon R T, Stevenson A E, Slifka A J. Corros Sci, 2012; 52: 1
[17] Briottet L, Moro I, Lemoine P. Int J Hydrogen Energy, 2012; 37: 17616
[18] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G. Mater Sci Eng, 2010; A527: 7252
[19] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541 (缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[20] Zhu Z X, Kuzmikova L, Li H J, Barbaro F. Mater Sci Eng, 2014; A605: 8
[21] Chen X W, Qiao G Y, Han X L, Wang X, Xiao F R, Liao B. Mater Des, 2014; 53: 888
[22] Li H L,Guo S W,Feng Y R,Huo C Y,Chai H F. Microstructure Analysis and Metallograph Identification of High-Strength Microalloying Pipelines Steel. Beijing: Petroleum Industry Press, 2001: 69 (李鹤林,郭生武,冯耀荣,霍春勇,柴惠芬. 高强度微合金管线钢显微组织分析与鉴别图谱. 北京: 石油工业出版社, 2001: 69)
[23] Cheng Y F. Int J Hydrogen Energy, 2007; 32: 1269
[24] Zhang T M, Zhao W M, Guo W, Wang Y. J Chin Soc Corros Prot, 2014; 34: 315 (张体明, 赵卫民, 郭 望, 王 勇. 中国腐蚀与防护学报, 2014; 24: 315)
[25] Zhou C S, Zheng S Q, Chen C F, Lu G W. Corros Sci, 2013; 67: 184
[26] Chu W Y. Hydrogen Damage and Delayed Fracture. Beijing: Metallurgy Industry Press, 2000: 22 (褚武扬. 氢损伤与滞后断裂. 北京: 冶金工业出版社, 2000: 22)
[27] Rivera P C, Ramunni V P, Bruzzoni P. Corros Sci, 2012; 54: 106
[28] Xue H B, Cheng Y F. J Mater Eng Perform, 2013; 22: 170
[29] Chen Y X, Chang Q G. Acta Metall Sin, 2011; 47: 548 (陈业新, 常庆刚. 金属学报, 2011; 47: 548)
[30] Teus S M, Mazanko V F, Olive J M, Gavrijuk V G. Acta Mater, 2014; 69: 105
[31] Jothi S, Croft T N, Brown S G R. Int J Hydrogen Energy, 2014; 39: 20671
[32] Smoluchowski R. Phys Rev, 1952; 87: 482
[33] Yazdipour N, Haq A J, Muzaka K, Pereloma E V. Comput Mater Sci, 2012; 56: 49
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!