|
|
EFFECTS OF CHLORIDE ION ON THE ELECTRO- CHEMICAL BEHAVIOR OF Pb-Ag-RE ALLOY ANODE |
ZHONG Xiaocong, JIANG Liangxing( ), LÜ Xiaojun, LAI Yanqing, LI Jie, LIU Yexiang |
School of Metallurgy and Environment, Central South University, Changsha 410083 |
|
Cite this article:
ZHONG Xiaocong, JIANG Liangxing, LÜ Xiaojun, LAI Yanqing, LI Jie, LIU Yexiang. EFFECTS OF CHLORIDE ION ON THE ELECTRO- CHEMICAL BEHAVIOR OF Pb-Ag-RE ALLOY ANODE. Acta Metall Sin, 2015, 51(3): 378-384.
|
Abstract Corrosion and oxygen evolution behavior of Pb-Ag-RE alloy anode has been comparatively investigated in H2SO4 solution without Cl- and with 500 mg/L Cl- by galvonostataic polarization, SEM, XRD, EIS and Tafel scanning. The results show that anodic layer on Pb-Ag-RE anode formed in electrolyte with Cl- exhibits ‘volcanic vent'-like holes, and the metallic substrate in this electrolyte shows obvious localized corrosion feature with large numbers of corrosion pits. In addition, the presence of Cl- decreases the amount of PbO2 on the surface of anodic layer. It also inhibits the formation and adsorption of oxygen evolution intermediates, and further enhances the charge transfer resistance of oxygen evolution reaction. Therefore, Cl- is detrimental to the corrosion resistance and oxygen evolution reactivity of Pb-Ag-RE alloy anode. Consequently, the Cl- concentration in electrolyte should be reduced as low as possible during industrial operation.
|
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51204208 and 51374240), Natural Science Foundation of Hunan Province (No.13JJ1003), China Postdoctoral Science Foundation (No.2013M540638) and Fundamental Research Funds for the Central Universities of Central South University (No.2014zzts028) |
[1] |
Clancy M, Bettles C J, Stuart A, Birbilis N. Hydrometallurgy, 2013; 131-132: 144
|
[2] |
Mohammadi M, Alfantazi A. J Electrochem Soc, 2013; 160: C253
|
[3] |
Felder A, Prengaman R D. JOM, 2006; 58(10): 28
|
[4] |
Ho J C K, Filho G T, Simpraga R, Conway B E. J Electroanal Chem, 1994; 366: 147
|
[5] |
Zhong X C, Gui J F, Yu X Y, Liu F Y, Jiang L X, Lai Y Q, Li J, Liu Y X. Acta Phys-Chim Sin, 2014; 30: 492
|
[6] |
Hong B, Jiang L X, Lü X J, Ni H F, Lai Y Q, Li J, Liu Y X. Chin J Nonferrous Met, 2012; 22: 1126
|
|
(洪 波, 蒋良兴, 吕晓军, 倪恒发, 赖延清, 李 劼, 刘业翔. 中国有色金属学报, 2012; 22: 1126)
|
[7] |
Osório W R, Fretas E S, Peixoto L C, Spinelli J E, Garcia A. J Power Sources, 2012; 207: 183
|
[8] |
Petrova M, Noncheva Z, Dobrev T, Rashkov S, Kounchev N, Petrov D, Vlaev S, Mihnev V, Zarev S, Georgieva L. Hydrometallurgy, 1996; 40: 293
|
[9] |
Tunnicliffe M, Mohammadi F, Alfantazi A. J Electrochem Soc, 2012; 159: C170
|
[10] |
Liu H, Wang Y, Chai L, Xiao H, Pei F, Shu Y. Trans Nonferrous Met Soc China, 2011; 21: 1665
|
[11] |
Yang H T, Guo Z C, Chen B M, Liu H R, Zhang Y C, Huang H, Li X L, Fu R C, Xu R D. Hydrometallurgy, 2014; 147-148: 148
|
[12] |
Von Fraunhofer J A. Anti-Corros Method Mater, 1968; 15: 4
|
[13] |
Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev T, Mirkova L, Vermeersch R, Demaerel J P. Hydrometallurgy, 2000; 57: 109
|
[14] |
Hampson N, Lazarides C, Henderson M. J Power Sources, 1981; 7: 181
|
[15] |
Cifuentes L, Astete E, Crisóstomo G, Simpson J, Cifuentes G, Pilleux M. Corros Eng Sci Technol, 2005; 40: 321
|
[16] |
Pavlov D, Dinev Z. J Electrochem Soc, 1980; 127: 855
|
[17] |
Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J, Liu Y. J Electroanal Chem, 2012; 671: 16
|
[18] |
Bisquert J, Randriamahazaka H, Garcia-Belmonte G. Electrochim Acta, 2005; 51: 627
|
[19] |
Brug G J, Van Den Eeden A L G, Sluyters-Rehbach M, Sluyters J H. J Electroanal Chem Interfacial Electrochem, 1984; 176: 275
|
[20] |
Li Y, Jiang L, Liu F, Li J, Liu Y. RSC Adv, 2014; 4: 24020
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|