Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (10): 1377-1385    DOI: 10.11900/0412.1961.2020.00107
Current Issue | Archive | Adv Search |
Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution
LIU Haixia(), CHEN Jinhao, CHEN Jie, LIU Guanglei
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Download:  HTML  PDF(1970KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 304 stainless steel specimens were corroded in 3%NaCl solution, and then cavitation erosion experiments were performed on these specimens using an experimental rig that conformed to the ASTM G134 standard. The effects of both the corrosion time and erosion time on cavitation erosion were analyzed. The cavitation erosion characteristics were described via the mass loss, surface microstructure, three-dimensional surface morphology and microhardness. The results show that for the specimen corroded for 24 h, the stage of cavitation erosion attenuation commences at the cavitation erosion time of 120 min. In the early stage of cavitation erosion, erosion pits manifest small size and depth. In the later stage of cavitation erosion, the plastic deformation is intensified and large erosion pits are abundant. Microcracks expand along grain boundaries. Eventually, the interconnection between erosion pits incurs peeling-off of grain boundaries. The surface roughness increases with the cavitation erosion time. Compared to the corroded specimens, the non-corroded specimen demonstrates higher surface roughness after cavitation erosion. As the corrosion time increases from 24 h to 120 h and the cavitation erosion time is remained at 120 min, the plastic deformation is strengthened and microcracks emerge at grain boundaries. The 3%NaCl solution helps to suppress cavitation erosion. Nevertheless, as the corrosion time increases, the suppression effect attenuates.

Key words:  cavitation erosion      304 stainless steel      corrosion      mass loss      surface morphology      microhardness     
Received:  07 April 2020     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of Chin(51775251)
Corresponding Authors:  LIU Haixia     E-mail:  liuhx@mail.ujs.edu.cn

Cite this article: 

LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution. Acta Metall Sin, 2020, 56(10): 1377-1385.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00107     OR     https://www.ams.org.cn/EN/Y2020/V56/I10/1377

Fig.1  Schematic of the cavitating waterjet erosion experimental rig
Fig.2  Image of the test chamber
Fig.3  Cumulative mass loss (Δm) at different standoff distances (t—cavitation erosion time)
Fig.4  Surface morphologies of the specimens before (a) and after corrosion for 24 h (b) and 120 h (c)
Fig.5  Variations of cumulative mass loss and cumulative mass loss rate (ER) with cavitation erosion time (t)
Fig.6  SEM images of surface microstructures at different cavitation erosion time
(a) 60 min (b) 120 min (c) 240 min (d) 360 min
Fig.7  Three-dimensional surface morphologies at different cavitation erosion time (unit: μm)
Color online
(a) 60 min (b) 120 min (c) 240 min (d) 360 min
Fig.8  Variation of surface roughness (Sa) with cavitation erosion time
Fig.9  Comparison of the variation of microhardness with depth in cross section of specimen between corroded and non-corroded specimens
Fig.10  Surface microstructures of specimens after cavitation erosion for 120 min without corrosion (a) and with corrosion of 120 h (b)
Fig.11  Three-dimensional surface morphologies after cavitation erosion for 120 min without corrosion (a) and with corrosion of 120 h (b) (unit: μm)
Color online
[1] Lebon G S B, Tzanakis I, Pericleous K, et al. Experimental and numerical investigation of acoustic pressures in different liquids [J]. Ultrasonics-Sonochem, 2018, 42: 411
doi: 10.1016/j.ultsonch.2017.12.002
[2] Franc J P, Michel J M. Fundamentals of Cavitation [M]. Holland: Kluwer Academic Publishers, 2004: 269
[3] Peng K W, Tian S C, Li G S, et al. Mapping cavitation impact field in a submerged cavitating jet [J]. Wear, 2018, 396-397: 22
doi: 10.1016/j.wear.2017.11.006
[4] Zhou M M, Liu H X, Kang C, et al. Resistance of curved surfaces to the cavitation erosion produced through high-pressure submerged waterjet [J]. Wear, 2019, 440-441: 203091
doi: 10.1016/j.wear.2019.203091
[5] Liu H X, Kang C, Zhang W, et al. Flow structures and cavitation in submerged waterjet at high jet pressure [J]. Exp. Thermal Fluid Sci., 2017, 88: 504
doi: 10.1016/j.expthermflusci.2017.07.003
[6] Lehocka D, Klich J, Foldyna J, et al. Copper alloys disintegration using pulsating water jet [J]. Measurement, 2016, 82: 375
doi: 10.1016/j.measurement.2016.01.014
[7] Kang C, Liu H X, Zhang T, et al. Investigation of submerged waterjet cavitation through surface property and flow information in ambient water [J]. Appl. Surf. Sci., 2017, 425: 915
doi: 10.1016/j.apsusc.2017.07.115
[8] Wu C Q, Ren R M, Liu P T, et al. Cavitation erosion of 304 stainless steel induced by caviting water jet [J]. Chin. J. Mater. Res., 2016, 30: 473
doi: 10.11901/1005.3093.2015.730
(吴从前, 任瑞铭, 刘鹏涛等. 304不锈钢空化水射流表面空蚀损伤研究 [J]. 材料研究学报, 2016, 30: 473)
doi: 10.11901/1005.3093.2015.730
[9] Liu H, Zhao X J, Liu P T, et al. Cavitation damage on surface of pure copper by cavitating water jet erosion [J]. Mater. Mech. Eng., 2017, 41(5): 68
(刘 欢, 赵秀娟, 刘鹏涛等. 空化水射流冲蚀纯铜的表面空蚀损伤 [J]. 机械工程材料, 2017, 41(5): 68)
[10] Azhari A, Schindler C, Hilbert K, et al. Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304 [J]. Surf. Coat. Technol., 2014, 258: 1176
doi: 10.1016/j.surfcoat.2014.07.013
[11] Zheng Z B, Zheng Y G. Effects of surface treatments on the corrosion and erosion-corrosion of 304 stainless steel in 3.5% NaCl solution [J]. Corros. Sci., 2016, 112: 657
doi: 10.1016/j.corsci.2016.09.005
[12] Zhao Y L, Zhou F, Yao J, et al. Erosion-corrosion behavior and corrosion resistance of AISI 316 stainless steel in flow jet impingement [J]. Wear, 2015, 328-329: 464
doi: 10.1016/j.wear.2015.03.017
[13] Aribo S, Barker R, Hu X M, et al. Erosion-corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution [J]. Wear, 2013, 302: 1602
doi: 10.1016/j.wear.2012.12.007
[14] Kovendhan M, Kang H, Jeong S, et al. Study of stainless steel electrodes after electrochemical analysis in sea water condition [J]. Environ. Res., 2019, 173: 549
doi: 10.1016/j.envres.2019.03.069 pmid: 31004909
[15] Qiao Y X, Wang S, Liu B, et al. Synergistic effect of corrosion and cavitation erosion of high nitrogen stainless steel [J]. Acta Metall. Sin., 2016, 52: 233
doi: 10.11900/0412.1961.2015.00282
(乔岩欣, 王 硕, 刘 彬等. 新型高氮钢的腐蚀和空蚀交互作用研究 [J]. 金属学报, 2016, 52: 233)
doi: 10.11900/0412.1961.2015.00282
[16] Yong X Y, Xiao N, Shen H J, et al. Responses of the corroded surface layer of austenitic stainless steel to different corrosive conditions under cavitation [J]. Mater. Sci. Eng., 2016, A671: 118
[17] Luo Q, Zhang Q, Qin Z B, et al. The synergistic effect of cavitation erosion and corrosion of nickel-aluminum copper surface layer on nickel-aluminum bronze alloy [J]. J. Alloys Compd., 2018, 747: 861
doi: 10.1016/j.jallcom.2018.03.103
[18] Niederhofer P, Richrath L, Huth S, et al. Influence of conventional and powder-metallurgical manufacturing on the cavitation erosion and corrosion of high interstitial CrMnCN austenitic stainless steels [J]. Wear, 2016, 360-361: 67
doi: 10.1016/j.wear.2016.04.017
[19] Basumatary J, Nie M, Wood R J K. The synergistic effects of cavitation erosion-corrosion in ship propeller materials [J]. J. Bio- Tribo-Corros., 2015, 1: 1
doi: 10.1007/s40735-014-0001-9
[20] Selvam K, Saini J, Perumal G, et al. Exceptional cavitation erosion-corrosion behavior of dual-phase bimodal structure in austenitic stainless steel [J]. Tribol. Int., 2019, 134: 77
doi: 10.1016/j.triboint.2019.01.018
[21] Basumatary J, Wood R J K. Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution [J]. Wear, 2017, 376-377: 1286
doi: 10.1016/j.wear.2017.01.047
[22] ASTM. ASTM G134-17 Standard test method for erosion of solid materials by cavitating liquid jet [S]. West Conshohocken, PA: ASTM International, 2017
[23] Soyama H, Takakuwa O. Enhancing the aggressive strength of a cavitating jet and its practical application [J]. J. Fluid Sci. Technol., 2011, 6: 510
doi: 10.1299/jfst.6.510
[24] Qu X H. The corrossion susceptibility study on 304 stainless steel in circulating cooling water containing chloride ion [D]. Beijing: Beijing University of Chemical Technology, 2008
(曲秀华. 304不锈钢在含氯离子循环冷却水中腐蚀敏感性的影响 [D]. 北京: 北京化工大学, 2008)
[25] Yang L Q, Zhang C, Xiao J S. Effect of NaCl solution concentration on acoustic emission feature during corrosion of 304 stainless steel [J]. Trans. Mater. Heat Treat., 2014, 35(12): 184
(杨立清, 张 超, 肖俊生. NaCl溶液浓度对304不锈钢腐蚀过程的声发射特征影响 [J]. 材料热处理学报, 2014, 35(12): 184)
[26] Zhuang D D, Chen W B, Ouyang Y D, et al. Comparative investigation of ultrasonic cavitation erosion mechanism for low-carbon and 304 stainless steels [J]. Surf. Technol., 2019, 48(1): 225
(庄栋栋, 陈文博, 欧阳亚东等. 低碳钢与304不锈钢的超声空蚀机理对比研究 [J]. 表面技术, 2019, 48(1): 225)
[27] Zhang T, Liu H X, Kang C, et al. Ultrasonic cavitation erosion behavior and mechanism of Pb-brass alloy in different liquids [J]. Surf. Technol., 2018, 47(1): 109
(张 桃, 刘海霞, 康 灿等. 铅黄铜合金在不同溶体介质中的超声空蚀行为及机理 [J]. 表面技术, 2018, 47(1): 109)
[1] LI Yuxing, LIU Xinghao, WANG Cailin, HU Qihui, WANG Jinghan, MA Hongtao, ZHANG Nan. Research Progress on Corrosion Behavior of Gaseous CO2 Transportation Pipelines Containing Impurities[J]. 金属学报, 2021, 57(3): 283-294.
[2] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[3] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[4] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[5] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[6] WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals[J]. 金属学报, 2021, 57(1): 1-15.
[7] LI Jichen, FENG Di, XIA Weisheng, LIN Gaoyong, ZHANG Xinming, REN Minwen. Effect of Non-Isothermal Ageing on Microstructure and Properties of 7B50 Aluminum Alloy[J]. 金属学报, 2020, 56(9): 1255-1264.
[8] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[9] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[12] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[13] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[14] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[15] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
No Suggested Reading articles found!