Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 364-370    DOI: 10.11900/0412.1961.2014.00522
Current Issue | Archive | Adv Search |
INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT
YANG Hao1, HUANG Jihua1(), CHEN Shuhai1, ZHAO Xingke1, WANG Qi2, LI Dehua2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Gree Electric Appliances, Inc. of Zhuhai, Zhuhai 519070
Cite this article: 

YANG Hao, HUANG Jihua, CHEN Shuhai, ZHAO Xingke, WANG Qi, LI Dehua. INFLUENCE OF THE COMPOSITION OF Zn-Al FILLER METAL ON THE INTERFACIAL STRUCTURE AND PROPERTY OF Cu/Zn-Al/Al BRAZED JOINT. Acta Metall Sin, 2015, 51(3): 364-370.

Download:  HTML  PDF(4687KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu/Al dissimilar metal joint is a compound structure that can efficiently decrease manufacturing costs, reduce product weight, and integrate the advantages of both metals. For the excellent comprehensive properties, the Cu/Al dissimilar metal joint has broad application prospects in air conditioners, refrigerators, cables, electronic components, solar collectors, et al. Brazing is considered as a promising method to join the Cu/Al dissimilar metal for lower residual stress, lower costs, higher precision and better adaption to the structure of joint. Meanwhile, the Zn-Al filler metal is considered as the relatively ideal filler metal due to better property of the Cu/Zn-Al/Al joint. However, the influence of the composition of the Zn-Al filler metal on the interfacial structure near Cu substrate and property of the Cu/Al joint has not been investigated. In this work, the Cu/Al joints were brazed by Zn-15Al, Zn-22Al, Zn-28Al, Zn-37Al and Zn-45Al filler metals, respectively. The influences of the composition of Zn-Al filler metals on the interfacial structure near Cu substrate of the Cu/Al joints were investigated, and the relationships of the composition of the Zn-Al filler metals, the interfacial structure and the shear strength of the Cu/Al joints were described systematically. It was found that the interfacial structure of the Cu/Zn-15Al/Al brazed joint was Cu/Al4.2Cu3.2Zn0.7. For thinner Al4.2Cu3.2Zn0.7 layer (2~3 μm), the shear strength of the joint was higher (66.3 MPa). With the increase of Al content of the filler metal, the thickness of Al4.2Cu3.2Zn0.7 layer at the interface was increased for Cu/Zn-22Al/Al joint, even some CuAl2 phase can be found nearby the Al4.2Cu3.2Zn0.7 layer of Cu/Zn-28Al/Al joint, and the shear strength of the Cu/Al joints were decreased correspondingly. When the Cu/Al joint was brazed by the Zn-37Al filler metal, the interfacial structure near Cu substrate was transformed into Cu/Al4.2Cu3.2Zn0.7/CuAl2. For higher brittleness of CuAl2 layer, the shear strength of the joint was decreased obviously (34.5 MPa). Finally, the interfacial structure of the Cu/Zn-45Al/Al joint was transformed into Cu/CuAl2, the interfacial structure lead to the lower shear strength of the joint, which is only 31.6 MPa.

Key words:  Cu/Al joint      brazing      interfacial structure      intermetallic compound      shear strength     
ZTFLH:  TG425  
Fund: Supported by Guangdong Provincial Science and Technology Project (No.2010A080402014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00522     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/364

Filler metal TS TL TB
Zn-15Al 382 457 487
Zn-22Al 407 490 520
Zn-28Al 423 505 535
Zn-37Al 490 540 570
Zn-45Al 505 559 589
Table 1  Melting points and brazing temperatures of the Zn-Al filler metals
Fig.1  Schematic of the brazed specimen
Fig.2  SEM images of the interfacial zones near Cu substrate of the Cu/Al joints brazed with Zn-15Al (a), Zn-22Al (b), Zn-28Al (c), Zn-37Al (d) and Zn-45Al (e)
Filler metal Position Atomic fraction / % Possible phase
Al Cu Zn
Zn-15Al A 55.15 34.12 10.23 Al4.2Cu3.2Zn0.7
Zn-22Al B 55.00 35.96 9.03 Al4.2Cu3.2Zn0.7
C 68.34 28.26 3.40 CuAl2
Zn-28Al D 53.77 35.34 10.89 Al4.2Cu3.2Zn0.7
E 67.88 26.77 5.35 CuAl2
Zn-37Al F 55.14 37.59 7.27 Al4.2Cu3.2Zn0.7
G 67.99 29.25 2.77 CuAl2
Zn-45Al H 56.33 38.50 5.17 Al4.2Cu3.2Zn0.7
I 69.09 28.94 1.96 CuAl2
  
Fig.3  XRD spectra of the interfacial zones near Cu substrate of the Cu/Al joints brazed with Zn-15Al (a), Zn-22Al (b) and Zn-37Al (c)
Fig.4  Shear strength of Cu/Al joints brazed with Zn-Al filler metals
Fig.5  Fractographs of the Cu/Al joints brazed with Zn-15Al (a), Zn-22Al (b), Zn-28Al (c), Zn-37Al (d) and Zn-45Al (e)
[1] Liu P, Shi Q Y, Wang W, Wang X, Zhang Z L. Mater Lett, 2008; 62: 4106
[2] Xue P, Ni D R, Wang D, Xiao B L, Ma Z Y. Mater Sci Eng, 2011; A528: 4683
[3] Zuo D, Hu S S, Shen J Q, Xue Z Q. Mater Des, 2014; 58: 357
[4] Mai T A, Spowage A C. Mater Sci Eng, 2004; A374: 224
[5] Xue P, Xiao B L, Ni D R, Ma Z R. Mater Sci Eng, 2010; A527: 5723
[6] Matsuoka S, Imai H. J Mater Process Technol, 2009; 209: 954
[7] Eslami P, Taheri K A. Mater Lett, 2011; 65: 1862
[8] Lee T H, Lee Y J, Park K T, Nersisyan H H, Jeong H G, Lee J H. J Mater Process Technol, 2013; 213: 487
[9] Xia C Z, Li Y J, Puchkov U A, Gerasimov S A, Wang J. Vacuum, 2008; 82: 799
[10] Huang M L, Kang N, Zhou Q, Huang Y Z. J Mater Sci Technol, 2012; 28: 844
[11] Berlanga L C, Albístur G A, Balerdi A P, Gutiérrez P M, Fernández C J. Manuf Process, 2011; 26: 236
[12] Xiao Y, Ji H J, Li M Y, Kim J Y. Mater Des, 2013; 52: 740
[13] Ji F, Xue S B, Dai W. Mater Des, 2012; 42: 156
[14] Ji F, Xue S B, Dai W. Rare Met Mater Eng, 2013; 42: 2453
[15] Zhang Q Y,Zhuang H S. Brazing and Soldering Manual. Beijing: China Machine Press, 2008: 498
(张启运,庄鸿寿. 钎焊手册. 北京: 机械工业出版社, 2008: 498)
[16] Yan X Q, Liu S X, Long W M, Huang J L, Zhang L Y, Chen Y. Mater Lett, 2013; 93: 183
[17] Zhang M, Xue S B, Ji F, Lou Y B, Wang S Q. Trans China Weld Inst, 2011; 32(2): 93
(张 满, 薛松柏, 姬 峰, 娄银斌, 王水庆. 焊接学报, 2011; 32(2): 93)
[18] Zhang M, Xue S B, Ji F, Lou Y B, Wang S Q. Trans China Weld Inst, 2010; 31(9): 73
(张 满, 薛松柏, 姬 峰, 楼银斌, 王水庆. 焊接学报, 2010; 31(9): 73)
[19] Liu R. Master Thesis, Jiangsu University of Science and Technology, ZhenJiang, 2012
(刘 日. 江苏科技大学硕士学位论文, 镇江, 2012)
[20] Yan X Q, Liu S X, Long W M, Huang J L, Zhang L Y, Chen Y. Mater Lett, 2013; 93: 183
[21] Chen Z,Zhou F,Wang G F. Principle of Joining and Welding. Harbin: Harbin Institute of Technology Press, 2001: 166
(陈 铮,周 飞,王国凡. 材料连接原理. 哈尔滨: 哈尔滨工业大学出版社, 2001: 166)
[22] Xu N, Ueji R, Morisada Y, Fujii H. Mater Des, 2014; 56: 20
[23] Yang M, Li M Y, Wang L, Fu Y, Kim J, Weng L. Mater Lett, 2011; 65: 1506
[24] Chen C Y, Hwang W S. Mater Trans, 2007; 48: 1938
[25] Chen C Y, Chen H L, Hwang W S. Mater Trans, 2006; 47: 1232
[26] Jiang H G, Dai J Y, Tong H Y, Ding B Z, Song Q H, Hu Z Q. J Appl Phys, 1993; 74: 6165
[27] Abbasi M, Taheri K A, Salehi M T. J Alloys Compd, 2001; 319: 233
[28] Hang C J, Wang C Q, Mayer M, Tian Y H, Zhou Y, Wang H H. Microelectron Reliab, 2008; 48: 416
[1] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[2] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[3] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[4] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[5] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[6] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[7] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[8] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[9] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
[10] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[11] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[12] Xiaoyi ZHANG, Hailong SHANG, Bingyang MA, Rongbin LI, Geyang LI. Brazing of Coated Al Foil Filler to AlN Ceramic[J]. 金属学报, 2018, 54(4): 575-580.
[13] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[14] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[15] Zhiwei NIU,Zheng YE,Kaikai LIU,Jihua HUANG,Shuhai CHEN,Xingke ZHAO. Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal[J]. 金属学报, 2017, 53(6): 719-725.
No Suggested Reading articles found!