Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 883-888    DOI: 10.11900/0412.1961.2014.00469
Current Issue | Archive | Adv Search |
STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY
Lei ZHAO1,2,Hongxiang JIANG2,Tauseef AHMAD2,Jiuzhou ZHAO2()
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY. Acta Metall Sin, 2015, 51(7): 883-888.

Download:  HTML  PDF(2474KB) 
Export:  BibTeX | EndNote (RIS)      
Key words:  Cu-Co-Fe alloy      liquid phase decomposition      rapid solidification      modeling and simulation     
Fund: Supported by National Natural Science Foundation of China (Nos.51271185, 51031003 and 51471173)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00469     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/883

Fig.1  SEM images of Cu-10%Co-10%Fe powders with diameters of 88~100 mm (a), 125~150 μm (b), 200~220 mm (c) and distribution of number density (N) of Fe-Co-rich phase particles along radial direction (r) of the Cu-10%Co-10%Fe powder with diameter of 125~150 mm (d)
Fig.2  EDS analysis of light (a) and dark (b) phases in Cu-Co-Fe alloy
Fig.3  Variation of temperature (T) and cooling rate at the center of an atomized Cu-Co-Fe droplet of 138 μm in diameter with time (t) (The inset shows the variation of the convective heat-transfer coefficient (h) at the surface of an atomized Cu-Co-Fe droplet of 138 mm in diameter with time)
Fig.4  Number density (N), nucleation rate (I) and driving force (DG) for nucleated Fe-Co-rich phase droplets at the center of an atomized drop of 138 μm in diameter vs time
Fig.5  Average radius (Ra) of Fe-Co-rich phase droplets at the center of an atomized drop with different diameters vs time
Fig.6  Variations of average radius and number density of Fe-Co-rich phase particles along the radial direction r in an atomized powder with diameter of 138 μm
Fig.7  Relationship between the maximum nucleation rate (Imax) of Fe-Co-rich phase droplets and the cooling rate during the nucleation period (B—constant)
Fig.8  Variation of average radius and number density of Fe-Co-rich particles vs powder diameter (d)
[1] Song J S, Hong S I. J Alloys Compd, 2000; 311: 265
[2] Berkowitz A E, Mitchell J R, Carey M J, Young A P, Zhang S, Spada F E, Parker F T, Hutten A, Thomas G. Phys Rev Lett, 1992; 68: 3745
[3] Dai F P, Cao C D, Wei B B. Chin Sci Bull, 2009; 54: 402 (代富平, 曹崇德, 魏炳波. 科学通报, 2009; 54: 402)
[4] He J, Zhao J Z. Acta Metall Sin, 2005; 41: 407 (何 杰, 赵九洲. 金属学报, 2005; 41: 407)
[5] Kim D I, Abbaschian R. J Phase Equilib, 2000; 21: 25
[6] Cao C D, G?rler G P. Chin Phys Lett, 2005; 22: 482
[7] Curiotto S, Battezzati L, Johnson E, Palumbo M, Pryds N. J Mater Sci, 2008; 43: 3253
[8] Munitz A, Bamberger A M, Wannaparhun S, Abbaschian R. J Mater Sci, 2006; 41: 2749
[9] Turchanin M A, Dreval L A, Abdulov A R, Agraval P G. Powder Metall Met Ceram, 2011; 50: 98
[10] Bamberger M, Munitz A, Kaufman L, Abbaschian R. Calphad, 2002; 26: 375
[11] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K. J Phase Equilib, 2002; 23: 236
[12] Palumbo M, Curiotto S, Battezzati L. Calphad, 2006; 30: 171
[13] Munitz A, Abbaschian R. J Mater Sci, 1998; 33: 3639
[14] Dai F P, Cao C D, Wei B B. Sci Chin, 2007; 37G: 376 (代富平, 曹崇德, 魏炳波. 中国科学, 2007; 37G: 376)
[15] Zhou F M, Sun D K, Zhu M F. Acta Phys Sin, 2010; 59: 3394 (周丰茂, 孙东科, 朱鸣芳. 物理学报, 2010; 59: 3394)
[16] Cui H B, Guo J J, Su Y Q, Wu S P, Li X Z, Fu H Z. Acta Metall Sin, 2007; 43: 907 (崔红保, 郭景杰, 苏彦庆, 吴士平, 李新中, 傅恒志. 金属学报, 2007; 43: 907)
[17] Ranz W E, Marshall W R. Chem Eng Prog, 1952; 48: 141
[18] Grant P S, Cantor B, Katgerman L. Acta Metall Mater, 1993; 41: 3097
[19] Zhao L, Zhao J Z. J Mater Res, 2013; 28: 1203
[20] Granasy L, Ratke L. Scr Metall Mater, 1993; 28: 1329
[21] Zhao J Z. Mater Sci Eng, 2007; A454-455: 637
[22] Dinsdale A T. Calphad, 1991; 15: 317
[23] Turchanin M A, Agraval P G. Powder Metall Met Ceram, 2007; 46: 77
[24] Turchanin M A, Agraval P G, Nikolaenko I V. J Phase Equilib, 2003; 24: 307
[25] Ohnuma I, Enoki H, Ikeda O, Kainuma R, Ohtani H, Sundman B, Ishida K. Acta Mater, 2002; 50: 379
[26] Moldover M R. Phys Rev, 1985; 31A: 1022
[27] Brandes E A, Brook G B. Smithells Metals Reference Book. 7th Ed., Oxford: Butterworth-Heinemann Ltd, 1992: 14
[28] Roy A K. Chhabra R P. Metall Trans, 1988; 19A: 273
[29] Moir S A, Jones H. Mater Sci Eng, 1993; A173: 161
[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[3] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[4] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[5] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[6] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[7] YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION[J]. 金属学报, 2014, 50(11): 1403-1412.
[8] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[9] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[10] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[11] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
[12] MO Yunfei, LIU Rangsu, LIANG Yongchao, ZHENG Naichao, ZHOU Lili,TIAN Zean, PENG Ping. MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION[J]. 金属学报, 2012, 48(8): 907-914.
[13] ZHAO Lei ZHAO Jiuzhou. STUDY OF THE SOLIDIFICATION OF Ni-Ag MONOTECTIC ALLOY[J]. 金属学报, 2012, 48(11): 1381-1386.
[14] CAO Yongqing LIN Xin WANG Zhitai YANG Haiou HUANG Weidong. MICROSTRUCTURE EVOLUTION OF Ni-Sn EUTECTIC ALLOY IN LASER RAPID SOLIDIFICATION[J]. 金属学报, 2011, 47(5): 540-547.
[15] ZHOU Shengyin HU Rui JIANG Li LI Jinshan KOU Hongchao CHANG Hui ZHOU Lian. DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY[J]. 金属学报, 2011, 47(4): 391-396.
No Suggested Reading articles found!