Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (7): 889-896    DOI: 10.11900/0412.1961.2015.00210
Current Issue | Archive | Adv Search |
FINITE ELEMENT SIMULATION OF HOT ROLLING PROCESS FOR SiCp/Al COMPOSITES
Li ZHOU1,2,Changzhou WANG1,Xingxing ZHANG2,Bolü XIAO2,Zongyi MA2()
1 School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110159
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016
Cite this article: 

Li ZHOU,Changzhou WANG,Xingxing ZHANG,Bolü XIAO,Zongyi MA. FINITE ELEMENT SIMULATION OF HOT ROLLING PROCESS FOR SiCp/Al COMPOSITES. Acta Metall Sin, 2015, 51(7): 889-896.

Download:  HTML  PDF(2548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this work, the hot rolling process of SiCp/2009Al composites is simulated using the fully coupled thermal-stress analysis in Abaqus/Explicit. By the investigation of formation process for rolling along with different fields of temperature, strain rate, strain and stress and their evolutionary history, the hot rolling mechanisms under complicated stress states is achieved. The results show that the maximum principal stress changes from compressive stress to tensile stress at the stage of rolling entrance and a reverse trend replaces it at the exit, and that the compressive stress is dominant in the deformation zone at the steady rolling stage. The temperature drop effect due to heat transfer is far greater than the temperature rise effect due to friction on the plate surface while the temperature rise is embodied in the center due to plastic deformation. Besides, the effect of strain rate on flow stress plays a leading role at the entrance and exit stage, and the flow stress on the plate surface in the deformation region is mainly determined by strain and temperature except the stick zone which is controlled by strain rate, however, the center flow stress in deformation is mainly affected by temperature.

Key words:  rolling      rheological behavior      composites      finite element     
Fund: Supported by National Basic Research Program of China (No.2012CB619600)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00210     OR     https://www.ams.org.cn/EN/Y2015/V51/I7/889

Fig.1  Finite element model for hot rolling
Fig.2  Initial microstructure of SiCp/2009Al composites
Thermo-physical parameter Value Unit
Young's modulus E 101 GPa
Poisson's ratio ν 0.34
Density ρ 2818 kgm-3
Thermal conductivity K 175 Wm-1-1
Coefficient of thermal expansion φ 17.2 × 10-6 -1
Specific heat cp 900 Jkg-1-1
Table 1  Thermo-physical properties of SiCp/2009Al composites[22,23]
Fig.3  Changes of rolling force with time under different mesh sizes d
Fig.4  Changes of rolling force with mesh size
Fig.5  Path selected in the strip
Fig.6  Effect of mass scaling factor w on equivalent stress
Fig.7  Absolute maximum pricinpal stress distributions during rolling for SiCp/2009Al

(a) initial contact stage

(b) steady stage

(c) thrown-out stage

Fig.8  Temperature field distribution (a) and changes of surface and center temperatures with time (b)
Fig.9  Strain field distribution (a) and changes of surface and center equivalent strains with time (b)
Fig.10  Velocity field distribution
Fig.11  Changes of equivalent strain rate with time
Fig.12  Equivalent stress field distribution (a) and changes of surface and center equivalent stresses with time (A—strain rate of being dominant, B—temperature drop of being dominant, C—temperature rise of being dominant, D—interaction effect) (b)
[1] Selvam J D R, Smart D S R, Dinaharan I. Mater Des, 2013; 49: 28
[2] Mortensen A, Llorca J. Annu Rev Mater Res, 2010; 40: 243
[3] Wang S S, Mao C H, Yang J, Liang Q S, Sun B. Chin J Rare Met, 2012; 36: 167 (汪山山, 毛昌辉, 杨 剑, 梁秋实, 孙 波. 稀有金属, 2012; 36: 167)
[4] Hassani A, Bagherpour E, Qods F. J Alloys Compd, 2014; 591: 132
[5] Balasubramanian I, Maheswaran R. Mater Des, 2015; 65: 511
[6] Liu J W, Zheng Z X, Wang J M, Wu Y C, Tang W M, Lu J. J Alloys Compd, 2008; 465: 239
[7] El-Sabbagh A, Solimam M, Taha M, Palkowski H. J Mater Process Technol, 2012; 212: 497
[8] Goswami R K, Sikand R, Dhar A, Grover O P, Jindal U C, Gupta A K. Mater Sci Technol, 1999; 15: 443
[9] El-Sabbagh A,?Soliman M,?Taha?M,?Palkowski H. J Mater Process Technol, 2013; 213: 1669
[10] Euh K, Kang S B. Mater Sci Eng, 2005; A395: 47
[11] Liu X H. Acta Metall Sin, 2010; 46: 1025 (刘相华. 金属学报, 2010; 46: 1025)
[12] Shahani A R, Setayeshi S, Nodamaie S A, Asadi M A, Rezaie S. J Mater Process Technol, 2009; 209: 1920
[13] Duan X J, Sheppard T. J Mater Process Technol, 2004; 150: 100
[14] Yu H L, Jiao Z J, Liu X H, Zhao X M. J Mater Metall, 2005; 4(1): 70 (喻海良, 矫志杰, 刘相华, 赵宪明. 材料与冶金学报, 2005; 4(1): 70)
[15] Arif A F M, Khan O, Sheikh A K. J Mater Process Technol, 2004; 147: 255
[16] Kan Y, Liu Z G, Zhang S H, Zhang L W, Cheng M, Song H W. Chin J Rare Met, 2015; 39(4): 289 (阚 盈, 刘振刚, 张士宏, 张立文, 程 明, 宋鸿武. 稀有金属, 2015; 39(4): 289)
[17] Shao J C, Xiao B L, Wang Q Z, Ma Z Y, Liu Y, Yang K. Mater Sci Eng, 2010; A527: 7865
[18] Xu H, Zhang X, Li H W, Li S, Wang C S, Wang Y L, Zhang B D. J Wuhan Univ Technol—Mater Sci Ed, 2012; 27: 443
[19] Serajzadeh S, Karimi T A, Nejati M, Izadi J, Fattahi M. J Mater Process Technol, 2002; 128: 88
[20] Yaakoubi M, Kchaou M, Dammak F. Comp Mater Sci, 2013; 68: 297
[21] Chen J, Chandrashekhara K, Mahimkar C, Lekakh S N, Richards V L. J Mater Process Technol, 2011; 211: 245
[22] Zhu Y, Kishawy H A. Int J Mach Tools Manuf, 2005; 45: 389
[23] Tan Y Q, Yang D M, Sheng Y. J Eur Ceram Soc, 2009; 29: 1029
[24] Ducobu F, Rivière-Lorphèvre E, Filippi E. Simul Modell Pract Theory, 2015; 53: 1
[25] Cocchetti G, Pagani M, Perego U. Comp Struct, 2013; 127: 39
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[4] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[5] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[6] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[7] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[8] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[9] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[10] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[11] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[12] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[13] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[14] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[15] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
No Suggested Reading articles found!