Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 537-543    DOI: 10.3724/SP.J.1037.2013.00014
Current Issue | Archive | Adv Search |
SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS
CHEN Shu, ZHAO Jiuzhou
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS. Acta Metall Sin, 2013, 49(5): 537-543.

Download:  PDF(2052KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Monotectic alloys have great potentials to be used in industry due to their special physical and mechanical properties. But these alloys have an essential drawback that just the miscibility gap in the liquid state poses problem during solidification. When a homogeneous, single-phase liquid is cooled into the miscibility gap, the components are no longer miscible and two liquid phases develop. Generally, the liquid-liquid decomposition causes the formation of the microstructure with serious phase segregation. Recent researches demonstrate that the only effective method to prevent the formation of the phase segregated microstructure in the immiscible alloys is using the rapid or sub-rapid solidification processing techniques. Laser surface treatment is a well known rapid solidification technique. It is widely applied in the industry to improve the surface properties of different type of alloys. But up to date, the solidification behaviors of the monotectic alloys under the laser surface treatment conditions have not been investigated. In this work, laser surface treatment experiments with Al-Pb alloys were carried out. A numerical model was developed to describe the microstructure evolution in the surface layer of Al-Pb alloys under the conditions of laser surface treatment. The model was applied to calculate the microstructure formation in the surface layer. The numerical results have a good agreement with the experimental ones. Both of the numerical and experimental results indicate that the microstructure of the laser treated surface layer is determined by the re-melting, composition homogenization and solidification of the alloy. Laser surface treatment can lead to the formation of an Al-Pb surface layer with well dispersed microstructure.

Key words:  monotectic alloy      rapid solidification      laser surface treatment     
Received:  09 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00014     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/537

[1] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.  Science, 2002; 297: 990


[2] Xian A P, Zhang X M, Li Z Y.  Acta Metall Sin, 1996; 32: 113

(冼爱平, 张修睦, 李忠玉. 金属学报, 1996; 32: 113)

[3] Li H L, Zhao J Z.  Acta Metall Sin, 2011; 47: 87

(李海丽, 赵九洲. 金属学报, 2011; 47: 87)

[4] Rudrakshi G B, Srivastava V C, Pathak J P, Ojha S N.  Mater Sci Eng, 2004; A383: 30

[5] Carberg T, Fredriksson H.  Metall Trans, 1982; 11A: 1665

[6] Zhao J Z, Gao L L, He J.  Appl Phys Lett, 2005; 87: 131905-1

[7] He J, Zhao J Z, Ratke L.  Acta Mater, 2006; 54: 1794

[8] An J, Dong C, Zhang Q Y.  Tribol Int, 2003; 36: 25

[9] Liu Y, Guo J J, Su Y Q, Ding H S, Jia J.  Chin J Nonferrous Met, 2001; 11: 84

(刘源, 郭景杰, 苏彦庆, 丁宏升, 贾均. 中国有色金属学报, 2001; 11: 84)

[10] Lu X Y, Cao C D, Kolbe M, Wei B B, Herlach D.  Mater Sci Eng, 2004; A375: 1101

[11] Zhao J Z.  Scr Mater, 2006; 54: 247

[12] He J, Zhao J Z, Ratke L.  Acta Mater, 2006; 54: 1749

[13] Zhao L, Zhao J Z.  Acta Metall Sin, 2012; 48: 1381

(赵雷, 赵九洲. 金属学报, 2012; 48: 1381)

[14] Muntz A.  Metall Trans, 1985; 16B: 149

[15] Sun Z, Annergren I, Pan D, Mai T A.  Mater Sci Eng, 2003; A345: 293

[16] Christodoublou G, Walker A, Steen W M, West D R F.  Met Technol, 1983; 10: 215

[17] Kac S, Kusinski J.  Mater Chem Phys, 2003; 81: 510

[18] Peng Q F, Shi Z, Bloyce A, Bell T.  Mater Sci Technol, 1990; 6: 999

[19] Boccalini M, Goldenstein H.  Int Mater Rev, 2001; 46: 92

[20] Leif A.  Metall Trans, 1984; 15A: 1831

[21] Lei Y P, Murakawa H, Shi Y W, Li X Y.  Comput Mater Sci, 2001; 21: 276

[22] Marquesee J A, Ross J.  J Chem Phys, 1983; 79: 373

[23] Marquesee J A, Ross J.  J Chem Phys, 1984; 80: 536

[24] Uebber N, Ratke L.  Scr Metall Mater, 1991; 25: 1133

[25] Granasy L, Ratke L.  Scr Metall Mater, 1993; 28: 1329

[26] Sommer F.  Z Metallkd, 1996; 87: 865

[27] Yu S K, Sommer F.  Z Metallkd, 1996; 87: 574

[28] Merkwitz M, Weise J, Thriener K, Hoyer W.  Z Metallkd, 1998; 89: 247

[29] Zhao J Z, Li H L, Zhang X F, He J, Ratke L.  Int J Mater Res, 2009; 100: 46

[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[3] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[4] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[5] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[6] Jiuzhou ZHAO, Hongxiang JIANG. Progress in the Solidification of Monotectic Alloys[J]. 金属学报, 2018, 54(5): 682-700.
[7] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[8] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[9] Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. EFFECT OF MICRO-ALLOYING ELEMENT Bi ON SOLIDIFICATION AND MICROSTRUCTURE OF Al-Pb ALLOY[J]. 金属学报, 2016, 52(4): 497-504.
[10] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[11] CHEN Shu, ZHAO Jiuzhou. EFFECT OF Sn ON THE SOLIDIFICATION PROCESS AND MICROSTRUCTURE OF Al-Pb MONOTECTIC ALLOYS[J]. 金属学报, 2014, 50(5): 561-566.
[12] YANG Zhizeng, SUN Qian, ZHAO Jiuzhou. DIRECTIONAL SOLIDIFICATION OF MONOTECTIC COMPOSITION Al-Bi ALLOY[J]. 金属学报, 2014, 50(1): 25-31.
[13] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[14] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[15] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
No Suggested Reading articles found!