Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1403-1412    DOI: 10.11900/0412.1961.2014.00300
Current Issue | Archive | Adv Search |
MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION
YANG Qianqian1, LIU Yuan1,2(), LI Yanxiang1,2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Tsinghua University, Beijing 100084
Cite this article: 

YANG Qianqian, LIU Yuan, LI Yanxiang. MODELING AND SIMULATION OF STRUCTURAL FORMATION OF POROUS ALUMINUM IN GASAR SOLIDIFICATION. Acta Metall Sin, 2014, 50(11): 1403-1412.

Download:  HTML  PDF(2900KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solid/gas eutectic unidirectional solidification process is a new kind of technology fabricating the lotus-type porous structure. Besides having the properties of large specific surface area, excellent sound absorption, penetrating performance etc. of traditional porous materials, the particularity of the lotus-type porous structure makes it has extraordinary mechanical and thermal properties. There is a great potential for lotus-type porous aluminum in the field of lightweight engineering and heat dissipation of chip owing to its low density, outstanding corrosion resistance and high thermal conductivity. However, the fabrication of lotus-type porous aluminum has always been more difficulty than other metals. Until porous aluminum with excellent pore structure was fabricated under very small solidification rates (0.008~0.015 mm/s) and high superheat degrees of melt (240~340 K), the proper processing parameters were recognized to be essential for the coupled growth of solid/gas phases for Al-H2 system, especially the solidification rate. In this work, a three-dimensional time-dependent model describing the evolution of single pore was established based on the theoretical analysis of mass transfer, gas bubble nucleation, pore growth, interruption and detachment. The morphology of single pore under different solidification rates were simulated during the Gasar process by using the finite difference method for Al-H2 system. The research reveals: coupled growth of solid/gas phases can be achieved under the solidification rates from 0.15 mm/s to 0.005 mm/s. The average pore diameter which ranges from 100 mm to 1100 mm increases with decreasing the solidification rate. The pore length also increases while the pore aspect ratio is nearly a constant about 40 with decreasing the solidification rate. The simulated average pore diameter is in good agreement with the experimental values when solidification rate equals to 0.015 mm/s, and then being slightly lower than the experimental ones with decreasing the solidification rate. The diffusion of hydrogen into the melt during the solidification process is regarded as the main reason of the discrepancy between simulated and experimental average pore diameters. The maximum value of the simulated solidification rates for coupled growth of solid/gas phases in Al-H2 system first increases from less than 0.01 mm/s to 0.15 mm/s and then being a constant, while the minimum ones increase from about 0.0001 mm/s to 0.01 mm/s with improving the overheat degree of melt and hydrogen partial pressure. By comparing the relative parameters of Al-H2 and Cu-H2 systems, the solubility of hydrogen is regarded to be the main parameter which determines solidification rates of coupled growth of solid/gas phases for Al-H2 system.

Key words:  unidirectional solidification      coupled growth      modeling and simulation      porous aluminum      solidification rate     
Received:  04 September 2014     
ZTFLH:  TG146  
  TG249  
Fund: National Natural Science Foundation of China (No.51271096) and New Century Excellent Talents in University (No.NCET-12-0310)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00300     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1403

Fig.1  Schematic of ideal lotus-type porous structure (rG—pore radius at the solid/liquid interface, rS—equivalent radius of circle which is approximately equal to half of the inter-pore spacing)
Fig.2  Solute diffusion boundary conditions and the corresponding coordinate selection (zl/g—gas/liquid interface, z0—height of remaining melt)
Fig.3  Schematic describing the gas pore growth in a short time Dt for Gasar process (v—solidificationrate; Dt—time increment; rG1, rG2—pore radius at the solid/liquid interface before and after Dt time; RG1, RG2—pore radius of curvature before and after Dt time; θ1, θ2—interfacial angle before and after Dt time; DV—increased volume of pore in Dt time; θ′—interfacial angle between the old hemispherical before Dt time and the new solidification height after Dt time)
Fig.4  Schematic of mesh devision of concentration field
Fig.5  Schematic of determination of gas phase in concentration field

(a) cross-section

(b) longitudinal-section

Fig.6  Cross-sections parallel to the solidification direction of porous Al under solidification rate v= 0.5 mm/s (a), 0.15 mm/s (b), 0.05 mm/s (c), 0.015 mm/s (d), 0.01 mm/s (e), 0.005 mm/s (f) and 0.0015 mm/s (g) ( p H 2 = p A r =0.25 MPa, superheat degree of melt DT=290 K, temperature gradient of solid phase GTS=10 K/mm, H—the solidification height, p H 2 —hydrogen pressure, p A r —argon pressure )
Fig.7  Comparisons of the simulated and experimental[21] average pore diameter results
Fig.8  Simulated results of pore length and pore aspect ratio
Fig.9  Simulated hydrogen concentration distributions in the melt ahead of the front of solidification under v=0.15 mm/s (a), 0.05 mm/s (b) and 0.015 mm/s (c) ( p H 2 = p A r =0.25 MPa, DT=290 K, GTS=10 K/mm)
Fig.10  Schematic of diffusion of hydrogen into the melt
Fig.11  Simulated range of solidification rate for coupled growth of solid/gas phases under different superheat degrees of melt ( p H 2 =pAr=0.25 MPa, GTS=10 K/mm) (a) and hydrogen partial pressures ( p H 2 +pAr=0.5 MPa, GTS=10 K/mm, DT=290 K) (b) for Al-H2 system
Fig.12  Critical superheat degree of melt ΔT ( p H 2 =pAr=0.25 MPa, GTS=10 K/mm) and hydrogen partial pressure p H 2 ( p H 2 +pAr=0.5 MPa, GTS=10 K/mm, DT=290 K) under different solidification rates for Al-H2 system
[1] Banhart J. Prog Mater Sci, 2001; 46: 559
[2] Nakajima H. Prog Mater Sci, 2007; 52: 1091
[3] Jiang G R, Li Y X, Liu Y. Metall Mater Trans, 2010; 41A: 3405
[4] Li Z J, Jin Q L, Yang T W, Jiang Y H, Zhou R. Acta Metall Sin, 2013; 49: 757
(李再久, 金青林, 杨天武, 蒋业华, 周 荣. 金属学报, 2013; 49: 757)
[5] Shapovalov V I. US Pat, 5181549, 1993
[6] Simone A E, Gibson L J. Acta Mater, 1996; 44: 1437
[7] Hyun S K, Nakajima H. Mater Sci Eng, 2003; A340: 258
[8] Muramatsu K, Ide T, Nakajima H, Eaton J K. J Heat Transfer, 2013; 135: 072601
[9] Chen L T, Zhang H W, Liu Y, Li Y X. Acta Metall Sin, 2012; 48: 329
(陈刘涛, 张华伟, 刘 源, 李言祥. 金属学报, 2012; 48: 329)
[10] Zhang H W, Chen L T, Liu Y, Li Y X. Int J Heat Mass Transfer, 2013; 56: 172
[11] Nakajima H. Proc Jpn Acad Ser B, 2010; 86: 884
[12] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165
(张华伟, 李言祥, 刘 源. 金属学报, 2006; 42: 1165)
[13] Park J S, Hyun S K, Suzuki S, Nakajima H. Acta Mater, 2007; 55: 5646
[14] Zhou R, Li Z H, Jiang Y H, Zhou R F, Yang T W, Jin Q L. Chin Pat, 200910094262.8, 2009
(周 荣, 黎振华, 蒋业华, 周荣锋, 杨天武, 金青林. 中国专利, 200910094262.8, 2009)
[15] Zahrani M M, Meratian M, Kabiri Y. Mater Lett, 2012; 85: 14
[16] Zhou R, Jiang Y H, Li Z H, Jin Q L, Yang T W, Zhou R F. Chin Pat, 200910094261.3, 2009
(周 荣, 蒋业华, 黎振华, 金青林, 杨天武, 周荣锋. 中国专利, 200910094261.3, 2009)
[17] Tane M, Nakajima H. J Mater Res, 2008; 23: 849
[18] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121
(刘 源, 李言祥, 张华伟. 金属学报, 2004; 40: 1121)
[19] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2007; 43: 11
(张华伟, 李言祥, 刘 源. 金属学报, 2007; 43: 11)
[20] Komissarchuk O, Xu Z B, Hao H, Zhang X L, Vladimir K. China Foundry, 2014; 11: 1
[21] Ide T, Iio Y, Nakajima H. Metall Mater Trans, 2012; 43A: 5140
[22] Drenchev L, Sobczak J, Malinov S, Sha W. Modell Simul Mater Sci Eng, 2006; 14: 663
[23] Li Y X,Wu A P. Principle of Materials Processing. Beijing: Tsinghua University Press, 2005: 83
(李言祥,吴爱萍. 材料加工原理. 北京: 清华大学出版社, 2005: 83)
[24] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2007; 43: 113
(张华伟, 李言祥, 刘 源. 金属学报, 2007; 43: 113)
[25] Kurz W, Fisher D J. Fundamental of Solidification. Switzerland: Trans Tech Publications, 1998: 22
[26] Zhang H W, Li Y X. Acta Phys Sin, 2007; 56: 4864
(张华伟, 李言祥. 物理学报, 2007; 56: 4864)
[27] Chen Z F. Bachelor Thesis, Tsinghua University, Beijing, 2011
(陈自发. 清华大学学士学位论文, 北京, 2011)
[28] Liu Y, Li Y X. Scr Mater, 2003; 49: 379
[29] Li Z J, Jin Q L, Yang T W, Zhou R, Jiang Y H. Acta Metall Sin, 2014; 50: 507
(李再久, 金青林, 杨天武, 周 荣, 蒋业华. 金属学报, 2014; 50: 507)
[30] Zhang H W. PhD Dissertation, Tsinghua University, Beijing, 2006
(张华伟. 清华大学博士学位论文, 北京, 2006)
[31] Fisher D J. Hydrogen Diffusion in Metals—A 30 Year Retrospective. Switzerland: Scitec Publications Ltd, 1999: 37
[32] Sigrist P, Feichtinger H K, Marincek B. Z Phys Chem-Frankfurt, 1977; 107: 211
[1] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[2] PENG Dongjian, LIN Xin, ZHANG Yunpeng, GUO Xiong, WANG Meng, HUANG Weidong. INVESTIGATION OF EFFECT OF INTERFACE ENERGY ANISOTROPY ON DENDRITIC GROWTH IN UNIDIRECTIONAL SOLIDIFICATION BY FRONT TRACKING SIMULATION[J]. 金属学报, 2013, 49(3): 365-371.
[3] LI Shuangming, FU Hengzhi. THEORETICAL ANALYSIS OF AN ABRUPT INCREASE IN GROWTH RATE ON THE DIRECTIONALLY SOLIDIFIED MICROSTRUCTURES OF OFF—EUTECTIC ALLOYS[J]. 金属学报, 2013, 49(12): 1543-1548.
[4] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[5] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[6] HAN Zhiqiang LI Jinxi YANG Wen ZHAO Haidong LIU Baicheng. MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY[J]. 金属学报, 2011, 47(1): 7-16.
[7] YANG Lili ZHENG Lijing XIAO Zhixia YAN Jie ZHANG Hu. EFFECT OF WITHDRAWAL RATE ON THE MICROSTRUCTURE OF DIRECTIONAL SOLIDIFIED Ti-47Al-2Cr-2Nb-0.8B ALLOYS[J]. 金属学报, 2010, 46(7): 879-884.
[8] LI Haili ZHAO Jiuzhou. MODELLING AND SIMULATION OF THE MICROSTRUC- TURE FORMATION IN A STRIP CAST Al–Pb ALLOY[J]. 金属学报, 2010, 46(6): 695-700.
[9] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[10] ZHANG Song YUAN Guangyin LU Chen DING Wenjiang. EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY[J]. 金属学报, 2010, 46(10): 1192-1199.
[11] QIAO Junwei ZHANG Yong CHEN Guoliang. SYNTHESIS OF PLASTIC Zr–BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2009, 45(4): 410-414.
[12] GUO Zhipeng XIONG Shoumei Mei Li John Allison. RELATIONSHIP BETWEEN METAL-DIE INTERFACIAL HEAT TRANSFER COEFFICIENT AND CASTING SOLIDIFICATION RATE IN HIGH PRESSURE DIE CASTING PROCESS[J]. 金属学报, 2009, 45(1): 102-106.
[13] ;. A novel method for solidification rate measurement of weld pool surface[J]. 金属学报, 2008, 44(9): 1131-1135 .
[14] Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. 金属学报, 2007, 43(6): 589-594 .
[15] Hua-Wei ZHANG. Difficulty in Fabricating Lotus-type Porous Al by Gasar Process[J]. 金属学报, 2007, 42(1): 11-16 .
No Suggested Reading articles found!