Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 540-547    DOI: 10.3724/SP.J.1037.2010.00494
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION OF Ni-Sn EUTECTIC ALLOY IN LASER RAPID SOLIDIFICATION
CAO Yongqing, LIN Xin, WANG Zhitai, YANG Haiou, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

CAO Yongqing LIN Xin WANG Zhitai YANG Haiou HUANG Weidong. MICROSTRUCTURE EVOLUTION OF Ni-Sn EUTECTIC ALLOY IN LASER RAPID SOLIDIFICATION. Acta Metall Sin, 2011, 47(5): 540-547.

Download:  PDF(1241KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure evolution of Ni–Sn alloys (Ni–28%Sn, Ni–30%Sn, Ni–33%Sn and Ni–35%Sn) near eutectic during laser rapid solidification has been investigated. In low velocity laser scanning, the microstructures of Ni–28%Sn and Ni–35%Sn hypereutetic alloys consist of refined primary dendritic phase, which is α–Ni phase for the former and Ni3Sn phase for the latter, and (α–Ni+Ni3Sn) eutectic phase. However, the microstructures of Ni–30%Sn and Ni-33%Sn near–eutectic alloys consist completely of (α–Ni+Ni3Sn) eutectic, and they undergo a morphological transition from the columnar to equiaxed eutectic from bottom to the top of molten pool. There is a small amount of residual coarse primary dendritic phase of substrate in the bottom of molten pool for these four Ni–Sn alloys. With increasing laser scanning velocity, compared with the mixed lamella and rod eutectic microstructures in the substrates, for these alloys eutectic in molten pool is completely composed of lamella eutectic, and lamella eutectic spacing is reduced significantly after laser rapid solidification. Besides, lamella eutectic in molten pool grows epitaxially along the normal to the molten pool interface with the substrate. Moreover, the composition range and the critical laser scanning velocity are also obtained for coupled eutectic growth during laser rapid solidification. In the present work, further analysis of microstructure evolution is given by using KGT and TMK models, showing a good agreement between the simulated and the experimental results.
Key words:  laser rapid solidification      Ni-Sn alloy      eutectic      microstructure evolution     
Received:  25 September 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50971102) and Programme of Introducing Talents of Discipline to Universities (No.08040)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00494     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/540

[1] Powell G L, Hogan L M. Inst Met, 1965; 93: 505

[2] Kattamis T Z, Fleming M C. Metall Trans, 1970; 1: 1449

[3] Jones B L. Metall Trans, 197l; 2: 2950

[4] Wei B, Herlach D M, Feuerbacher B, Sommer F. Acta Metall Mater, 1993; 41: 1801

[5] Wei B, Herlach D M, Sommer F, Kurz W. Mater Sci Eng, 1994; A181: 1150

[6] Goetzinger R, Barth M, Herlach D M. Acta Mater, 1998; 46: 1647

[7] Wei B, Yang G C, Zhou Y H. Acta Metall Mater, 1991; 39: 1249

[8] Wei B, Herlach D M, Sommer F. Mater Sci Lett, 1993; 12: 1774

[9] Xing L Q, Zhao D Q, Chen X C. Mater Sci, 1993; 28: 2733

[10] Tewari S N. Metall Trans, 1987; 18A: 525

[11] Chu M G, Shiohara Y. Metall Trans, 1984; 15A: 1303

[12] Lu Y P, Liu F, Yang G C, Zhou Y H. Appl Phys Lett, 2006; 89: 241902

[13] Li M J, Nagashio K, Ishikawa T, Yoda S, Kuribayashi K. Acta Mater, 2005; 53: 731

[14] Li J F, JieWQ, Zhao S, Zhou Y H. Metall Mater Trans, 2007; 38A: 1806

[15] Li J F, Li X L, Liu L, Lu S Y. Mater Res Soc, 2008; 23: 2139

[16] Rappaz M, Gremaud M, Dekumbis R, Kurz W. In: Mordike B L ed., Laser Treatment of Materials, Oberursel: DGM Informations gesellschaft–Verlay, 1987: 43

[17] GaumannM, Bezencqn C, Canalis P, Kurz W. Acta Mater, 2001; 49: 1051

[18] Rappaz M, David S A, Vitek J M, Boatner L A. Metall Trans, 1989; 20A: 1125

[19] Kurz W, Fisher D J. Fundamentals of Solidification, 3rd Ed. Switzerland: Trans Tech Publications, 1992: 83

[20] Trivedi R, Kurz W. Acta Metal Mater, 1994; 42: 15

[21] Hoadley A F A, Rappaz A. Metal Trans, 1992; 23B: 631

[22] Lin X, Yue T M, Yang H O, Huang W D. Acta Mater, 2006; 54: 1901

[23] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823

[24] Aziz M J. Appl Phys, 1982, 53: 1158

[25] Boettinger W J, Coriell S R, Trivedi R. Rapid Solidification Processing: Principles and Technologies IV. Baton Rouge, LA: Claitor’s Publishing Division, 1988: 13

[26] Brandes E A. Smithells Metals Reference Book. Bodmin, Cornwall: Butterworth & Co. Ltd, 1983: 41

[27] Trivedi R, Magnin P, Kurz W. Acta Metall, 1987; 35: 971
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[5] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[6] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[12] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[13] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[14] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[15] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
No Suggested Reading articles found!