Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 391-396    DOI: 10.3724/SP.J.1037.2010.00605
论文 Current Issue | Archive | Adv Search |
DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY
ZHOU Shengyin, HU Rui, JIANG Li, LI Jinshan, KOU Hongchao, CHANG Hui, ZHOU Lian
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

ZHOU Shengyin HU Rui JIANG Li LI Jinshan KOU Hongchao CHANG Hui ZHOU Lian. DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY. Acta Metall Sin, 2011, 47(4): 391-396.

Download:  PDF(982KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Much interest has been focused on the dendrite growth of undercooled melts in the theoretical field of solidification research. The BCT model was widely accepted to interpret dendrite growth behavior in rapid solidification process. In present case, substantial undercooling ΔT up to 415 K was achieved for Co80Pd20 melt applying molten glass denucleation combined with cyclic superheating. The dendritic morphology of the experimental alloy was investigated by OM and the solute concentration of appointed micro-area was analyzed by EDS. Based on the BCT dendrite growth model, the theoretical calculation of the related parameters of the dendrite growth process included tip radius R, dendrite growth velocity V, solute concentration in liquid at dendrite tip CL* and undercooling contributions were completed. It can be found that the dendritic morphology was only formed in the undercooling ranges of 0-72 K and 95-142 K. With the initial undercooling increasing, V rises steeply due to the increase of the growth driving force, but R displays a complicated variation attributed to the combine effects of thermal/solute diffusion. EDS analysis reveals that the experimental data of CL* is in accordance with the theoretical predication by BCT model. The results confirmed that the dendrite growth in undercooled Co80Pd20 melts can be interpreted successfully by BCT model.
Key words:  undercooled      rapid solidification      dendrite growth      solute trapping      Co80Pd20 alloy     
Received:  11 November 2010     
ZTFLH: 

TG111.4

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB610400), Program for New Century Excellent
Talents in University (No.NCET-07-0690) and the 111 Project (No.B08040)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00605     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/391

[1] Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M. Phys Rev Lett, 2007; 98: 125701

[2] Dragnevski K, Cochrane R F, Mullis A M. Phys Rev Lett, 2002; 89: 215502

[3] Wang H P, Yao W J, Wei B. Appl Phys Lett, 2006; 89: 201905

[4] Laxmanan V. Phys Rev, 1998; 57E: 2004

[5] Bisang U, Bilgram J H. Phys Rev, 1996; 54E: 5309

[6] Zang D Y, Wang H P, Wei B B. Acta Phys Sin, 2007; 56: 4804

(臧渡洋, 王海鹏, 魏炳波. 物理学报, 2007; 56: 4804)

[7] Yao W J, Wei B B. Sci China, 2004; 34E: 1

(姚文静, 魏炳波. 中国科学, 2004; 34E: 1)

[8] Lipton J, Kurz W, Trivedi R. Acta Metall, 1987; 35: 957

[9] Boettinger W J, Coriell S R, Trivedi R. In: Mehrabian R, Parrish P A eds., Proc 4th Conf on Rapid Solidification Processing: Principles and Technologies. Baton Rouge, LA: Claitors Publishing Division, 1987: 13

[10] Galenko P K, Danilov D A. Phys Lett, 1997; 235A: 271

[11] Wang H F, Liu F, Yang G C, Zhou Y H. Acta Mater, 2010; 58: 5402

[12] Herlach D M. Mater Sci Eng, 1994; R12: 177

[13] Holland–Moritz D, Herlach D M, Spaepen F. Superlattice Microst, 2007; 41: 196

[14] Wilde G, G¨orler G P, Willnecker R. Appl Phys Lett, 1996; 69: 2995

[15] Wilde G, G¨orler G P, Willnecker R. Appl Phys Lett, 1996; 69: 2953

[16] Jacobs G, Egry I. Phys Rev, 1999; 59B: 3961

[17] Zhou S Y, Hu R, Li J S, Chang H, Kou H C, Zhou L. Mater Sci Eng, 2010; A528: 973

[18] Zhou S Y, Hu R, Jiang L, Li J S, Kou H C, Chang H, Zhou L. J Mater Sci (submitted)

[19] Li J F, Yang G C, Zhou Y H. Acta Metall Sin, 1998; 34: 113

(李金富, 杨根仓, 周尧和. 金属学报, 1998; 34: 113)

[20] Chen Y Z, Yang G C, Liu F, Liu N, Xie H, Zhou Y H. Acta Metall Sin, 2006; 42: 703

(陈豫增, 杨根仓, 刘峰, 刘宁, 谢 辉, 周尧和. 金属学报, 2006; 42: 703)

[21] Liu N, Yang G C, Liu F, Chen Y Z, Yang C L, Zhou Y H. Acta Metall Sin, 2007; 43: 449

(刘宁, 杨根仓, 刘峰, 陈豫增, 杨长林, 周尧和. 金属学报, 2007; 43: 449)

[22] Liu F, Guo X F, Yang G C. Mater Res Bull, 2001; 36: 181

[23] Lu S Y, Li J F, Zhou Y H. J Crst Growth, 2007; 309: 103

[24] Zhou J, Xie F Q, Wu X Q, Zhang J. Acta Metall Sin, 2009; 45: 385

(周俊, 谢发勤, 吴向清, 张军. 金属学报, 2009; 45: 385)

[25] Langer J S, Muller–Krumbhaar H. Acta Metall, 1978; 26: 1681

[26] Volkmann T, Wilde G, Willnecker R, Herlach D M. J Appl Phys, 1998; 83: 3028

[27] Galenko P K, Funke O, Wang J, Herlach D M. Mater Sci Eng, 2004; A375–377: 488

[28] Funke O, Phanikumar G, Galenko P K, Chernova L, Reutzel S, Kolbe M, Herlach D M. J Crst Growth, 2006; 297: 211

[29] Aziz M J. J Appl Phys, 1982; 53: 1158

[30] Li J F, Lu Y L, Yang G C, Zhou Y H. Acta Metall Sin, 1998; 34: 586

(李金富, 吕衣礼, 杨根仓, 周尧和. 金属学报, 1998; 34: 586)
[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] Dejian SUN,Lin LIU,Taiwen HUANG,Jiachen ZHANG,Kaili CAO,Jun ZHANG,Haijun SU,Hengzhi FU. Dendrite Growth and Orientation Evolution in the Platform of Simplified Turbine Blade for Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(5): 619-626.
[3] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[4] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[5] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[6] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[7] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[8] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[9] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
[10] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[11] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[12] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[13] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
[14] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[15] MO Yunfei, LIU Rangsu, LIANG Yongchao, ZHENG Naichao, ZHOU Lili,TIAN Zean, PENG Ping. MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION[J]. 金属学报, 2012, 48(8): 907-914.
No Suggested Reading articles found!