Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 907-914    DOI: 10.3724/SP.J.1037.2012.00064
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION
MO Yunfei 1, LIU Rangsu 1, LIANG Yongchao 1, ZHENG Naichao 2, ZHOU Lili 1,TIAN Zean 1, PENG Ping 2
1. School of Physics and Microelectronics Science, Hunan University, Changsha 410082
2. School of Materials Science and Engineering, Hunan University, Changsha 410082
Cite this article: 

MO Yunfei, LIU Rangsu, LIANG Yongchao, ZHENG Naichao, ZHOU Lili,TIAN Zean, PENG Ping. MOLECULAR DYNAMICS SIMULATION ON THE EVOLUTION OF MICROSTRUCTURES OF LIQUID ZnxAl100−x ALLOYS DURING RAPID SOLIDIFICATION. Acta Metall Sin, 2012, 48(8): 907-914.

Download:  PDF(1932KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A molecular dynamics simulation of the rapid solidification process of liquid ZnxAl100−x (x=25, 50, 75) alloys has been performed, and their microstructural evolutions have been analyzed by means of bond–type index method of Honeycutt–Andersen (H–A) and cluster–type index method. Results show that at the cooling rate of 1×1012 K/s all rapid solidified alloys are amorphous structures with majority of 1551 bond–type and icosahedronal basic cluster of (12 0 12 0 0 0).In the rapid solidification process, a peak of the number of 1551 bond–type and icosahedronal basic cluster is demonstrated to exist at the special point corresponding to the glass transition temperature (Tg) of alloys. Tg, the glass forming ability (GFA) and the chemical short–range order (PCSRO) drop with the increase in content of Zn of ZnxAl100−x (x=25, 50, 75) alloys. Segregation and clustering of Zn and Al atoms in molten and rapid solidified alloys are also detected by PCSRO and visualization analysis.

Key words:  liquid Zn–Al alloy      rapid solidification      molecular dynamics simulation      clustering     
Received:  13 February 2012     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871033, 50571037 and 51071065)

Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00064     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/907

[1] Sproul W D. Science, 1996; 237: 889

[2] Kumar R, Sivaramakrishnan C S. J Mater Sci, 1969; 4: 1008

[3] Zhu Y H, Murphy S, Yeung C F. J Mater Process Technol, 1999; 94: 78

[4] Zhu Y H, Man H C, Lee W B. J Mater Process Technol, 2003; 139: 296

[5] Zhang L, Xu S N, Zhang C B, Qi Y. Acta Metall Sin, 2008; 44: 1101

(张林, 徐送宁, 张彩碚, 祁阳. 金属学报, 2008; 44: 1101)

[6] Zhao Y, Zhao J Z, Hu Z Q. Acta Metall Sin, 2008; 44: 1157

(赵毅, 赵九洲, 胡壮麟. 金属学报, 2008; 44: 1157)

[7] Wang R S, Hou H N, Chen G L. Acta Metall Sin, 2009; 45: 692

(王荣山, 侯怀宁, 陈国良, 金属学报, 2009; 45: 692)

[8] Li H, Bian X F, Zhang J X. Mater Sci Eng, 1999; A271: 116

[9] Fang H Z, Hui X, Chen G L, Liu Z K. Appl Phys Lett, 2009; 94: 091904

[10] Chen Y Q, Ma E, Sheng H W. Phys Rev Lett, 2009; 102: 245501

[11] Liu R S, Dong K J, Li J Y, Yu A B, Zou R P. J Non–Cryst Solids, 2005; 351: 612

[12] Liu R S, Li J Y, Dong K J, Zheng C X, Liu H R. Mater Sci Eng, 2002; B94: 141

[13] Zhang H T, Liu R S, Hou Z Y, Zhang A L, Chen X Y, Du S H. Acta Phys Sin, 2006; 55: 2409

(张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海. 物理学报, 2006; 55: 2409)

[14] Zhou L L, Liu R S, Hou Z Y, Tian Z A, Lin Y, Liu Q H.Acta Phys Sin, 2008; 57: 3653

(周丽丽, 刘让苏, 侯兆阳, 田泽安, 林艳, 刘全慧. 物理学报, 2008; 57:  3653)

[15] Liang Y C, Liu R S, Zhu X M, Zhou L L, Tian Z A, Liu Q H. Acta Phys Sin, 2010; 59: 7930

(梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧. 物理学报, 2010; 59: 395)

[16] Wang S, Lai S K. J Phys, 1980; 10F: 2717

[17] Li D H, Li X R, Wang S. J Phys, 1986; 16F: 309

[18] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91: 4950

[19] Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B. J Phys: Condens–Matter, 2007; 19: 196103

[20] Liu R S, Qi D W, Wang S. Phys Rev, 1992; 45B: 451

[21] Li H, Bian X F, Wang G H. Mater Sci Eng, 2001; A298: 245

[22] Wang L, Bian X F, Han X F. J At Mol Phys, 2000; 17: 448

(王丽, 边秀房, 韩秀峰. 原子与分子物理学报, 2000; 17: 448)

[23] Bian X F, Sun B A, Hu L N, Jia Y B. Phys Lett, 2005; 335A: 61

[24] Bian X F, Guo J, Lv X Q, Qin X B, Wang C D. Appl Phys Lett, 2007; 91: 221910

[25] Wendt H R, Abraham F F. Phys Rev Lett, 1978; 41: 1244

[26] Turnbull D. Contemp Phys, 1969; 10; 473

[27] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E. Appl Phys Lett, 2004; 84: 4029

[28] Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 2621

[29] Gao T H, Liu R S, Zhou L L, Tian Z A, Xie Q. Acta Phys Chim Sin, 2009; 25: 2093

(高廷红, 刘让苏, 周丽丽, 田泽安, 谢泉. 物理化学学报, 2009; 25: 2093)

[30] Qi D W, Wang S. Phys Rev, 1991; 44B: 884

[31] Hirata A, Guan P F, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M W. Nat Mater, 2010; 10: 28

[32] Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G. J Appl Phys, 2010; 107: 083511

[33] Sheng H W, Lou W K, Alamgir F M, Bai J M, Ma E. Nature, 2006; 439: 419

[34] He J H, Ma E. Phys Rev, 2001; 64B: 144206

[35] Dai X D, Li H J, Guo B, Liu B X. J Appl Phys, 2007; 101: 063512

[36] Yao Y B. Hankbook of Chemistry and Physics, Shanghai: Shanghai Science and Technology Press, 1985: 105

(姚允斌. 物理化学手册. 上海: 上海科学技术出版社, 1985: 105)
[1] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[3] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[4] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[5] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[6] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[7] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[8] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[9] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[10] Lei ZHAO,Hongxiang JIANG,Tauseef AHMAD,Jiuzhou ZHAO. STUDY OF SOLIDIFICATION FOR GAS-ATOMIZED DROPLET OF Cu-Co-Fe ALLOY[J]. 金属学报, 2015, 51(7): 883-888.
[11] LIANG Li, MA Mingwang, TAN Xiaohua, XIANG Wei, WANG Yuan, CHENG Yanlin. A SIMULATION STUDY OF MECHANICAL PROPER-TIES OF METAL Ti SAMPLE WITH DEFECTS[J]. 金属学报, 2015, 51(1): 107-113.
[12] CHEN Feng, SU Dexi, TONG Yunxiang, NIU Liqun,WANG Haibo, LI Li. MICROSTRUCTURE AND PHASE TRANSFORMATION OF Ni43Co7Mn41Sn9 HIGH TEMPERATURE SHAPE MEMORY ALLOY RIBBON[J]. 金属学报, 2013, 49(8): 976-980.
[13] CHEN Shu, ZHAO Jiuzhou. SOLIDIFICATION OF MONOTECTIC ALLOY UNDER LASER SURFACE TREATMENT CONDITIONS[J]. 金属学报, 2013, 49(5): 537-543.
[14] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[15] SHENG Liyuan, ZHANG Wei, LAI Chen, GUO Jianting,XI Tingfei, YE Hengqiang. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LAVES PHASE STRENGTHENING NiAl BASE COMPOSITE FABRICATED BY RAPID SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1318-1324.
No Suggested Reading articles found!