Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1244-1252    DOI: 10.11900/0412.1961.2014.00105
Current Issue | Archive | Adv Search |
EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY
LI Hai1,3(), MAO Qingzhong1, WANG Zhixiu1,2,3, MIAO Fenfen1, FANG Bijun1, SONG Renguo1,3, ZHENG Ziqiao2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 School of Materials Science and Engineering, Central South University, Changsha 410083
3 Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164
Cite this article: 

LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY. Acta Metall Sin, 2014, 50(10): 1244-1252.

Download:  HTML  PDF(4843KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve mechanical properties of age-hardenable Al alloys markedly based on the conventional processing conditions, a novel thermo-mechanical treatment, which was consisted of pre-ageing, cold-rolling and re-ageing, was proposed in the present work. The effects of the thermo-mechanical treatment on microstructure evolution and mechanical properties of the 6061 Al alloy were investigated further by hardness measurement, tensile testing, XRD, TEM and HRTEM. It was shown that both the increased strength and elongation of the 6061 Al alloy were achieved simultaneously by the thermo-mechanical treatment. Especially, after the combination of under-ageing at 180 ℃ for 2 h, cold-rolling with the thickness reduction of 75% and re-ageing at 100 ℃ for 48 h, the ultimate tensile strength and yield strength of the alloy were 560 and 542 MPa, respectively, and the elongation was about 8.5%. The strength increment of the thermo-mechanically treated 6061 Al alloy was attributed mainly to the additional introduction of dislocation strengthening, dislocation cell strengthening and high Taylor factor value except for precipitation strengthening as compared to the conventional peak-aged alloy. Furthermore, the improved elongation of the thermo-mechanically treated 6061 Al alloy was mainly due to both the re-precipitation of strengthening precipitates and slight recovery of dislocations during re-ageing, which increased the accumulation ability of dislocations during the tensile deformation.

Key words:  Al alloy      thermo-mechanical treatment      mechanical property      microstructure      strengthening mechanism     
Received:  12 March 2014     
ZTFLH:  TG147  
Fund: Supported by National Basic Research Program of China (No.2005CB623705), National Natural Science Foundation of China (No.51301027) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.14KJB430002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00105     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1244

Fig.1  Hardening curves of four cold-rolling 6061 Al alloys re-aged at 75 ℃ (a), 100 ℃ (b) and 125 ℃ (c) (ST—solution treatment, UA—under-ageing, PA—peak-ageing, OA—over-ageing, CR—cold-rolling)
Fig.2  Tensile properties of 6061 Al alloy after the thermo-mechanical treatment of pre-treating (a), cold-rolling (b), re-ageing at 75 ℃ (c), 100 ℃ (d) and 125 ℃ (e) for 48 h (sb—ultimate tensile strength, sy—yield strength, d—elongation)
Fig.3  Bright-field TEM images of 6061 alloys under pre-treatment conditions
Fig.4  Microstructures of 6061 alloys under re-ageing conditions
Condition Cube Goss Copper S Brass MA
UA 46.0 19.5 15.5 0 18.5 2.6
UA+CR 10.0 21.5 23.0 16.0 29.5 3.1
UA+CR+RA (100 ℃, 48 h) 10.0 20.0 22.5 15.5 30.5 3.1
Table 1  The texture components and corresponding volume fractions (%) and average Taylor factor MA of the 6061 alloys subjected to UA, UA+CR and UA+CR+RA (100 ℃, 48 h), respectively
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Masami S. Mater Sci Forum, 2006; 519-521: 11
[3] Yang M X, Yang G, Liu Z D, Wang C, Hu C, Huang C X. Acta Metall Sin, 2012; 48: 164
(杨沐鑫, 杨 钢, 刘正东, 王 昌, 胡 超, 黄崇湘. 金属学报, 2012; 48: 164)
[4] Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, Park J K. Mater Des, 2014; 54: 250
[5] Xie Z L, Wu X L, Xie J J, Hong Y S. Acta Metall Sin, 2008; 44: 803
(谢子令, 武晓雷, 谢季佳, 洪友士. 金属学报, 2008; 44: 803)
[6] Sha G, Tugcu K, Liao X Z, Trimby P W, Murashkin M Y, Valiev R Z, Ringer S P. Acta Mater, 2014; 63: 169
[7] Zhang B, Yuan S Q, Zhang X F, Lv S, Wang C. Trans Nonferrous Met Soc China, 2008; 18: 1067
(张 兵, 袁守谦, 张西锋, 吕 爽, 王 超. 中国有色金属学报, 2008; 18: 1067)
[8] Mehr V Y, Toroghinejad M R, Rezaeian A. Mater Sci Eng, 2014; A17: 40
[9] Xiong Y, He T T, Guo Z Q, Chen Z G, Zhang L F, Ren F Z. Trans Mater Heat Treat, 2011; 32: 63
(熊 毅, 贺甜甜, 郭志强, 陈正阁, 张凌峰, 任凤章. 材料热处理学报, 2011; 32: 63)
[10] Nageswara rao P, Jayaganthan R. Mater Des, 2012; 39: 226
[11] Tang J G, Zhang X M, Deng Y L, Du Y X, Chen Z Y. Comput Mater Sci, 2006; 38: 395
[12] Farshidi M H, Kazeminezhad M, Miyamoto H. Mater Sci Eng, 2013; A563: 60
[13] Murayma M, Horita Z, Hono K. Acta Mater, 2001; 49: 21
[14] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[15] Esmaeili S, Wang X, Lloyd D J, Poole W J. Metall Mater Trans, 2003; 34A: 751
[16] Taylor G I. J Inst Met, 1938; 62: 307
[17] Martin J W. Precipitation Hardening. Oxford: Butterworth-Heinemann, 1998: 78
[18] Wang X, Esmaeili S, Lloyd D J. Metall Mater Trans, 2006; 37A: 2691
[19] Delmas F, Casanove M J, Lours P, Couret A, Coujou A. Mater Sci Eng, 2004; A373: 80
[20] Cayron C, Buffat P A. Mater Sci Forum, 2000; 331: 1001
[21] Urrutia I G, Morris M, Morris D G, Mater Sci Eng, 2005; A394: 399
[22] Panigrahi S K, Jayaganthan R. Mater Sci Eng, 2011; A528: 3147
[23] Serizawa A, Hirosawa S, Sato T. Metall Mater Trans, 2008; 39A: 243
[24] Serizawa A, Sato T, Poole W J. Philos Mag Lett, 2010; 90: 279
[25] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[26] Esmaeili S, Lloyd D J, Poole W J. Acta Mater, 2003; 51: 2243
[27] Marthinsen K, Nes E. Mater Sci Eng, 1997; A234-236: 1095
[28] Nes E, Marthinsen K. Mater Sci Eng, 2002; A322: 176
[29] Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Adv Mater, 2006; 18: 2280
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[6] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!