Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1409-1413    
  论文 本期目录 | 过刊浏览 |
EBSD研究高Mn TRIP钢伪线织构
杨 平; 鲁法云;  孟利; 毛卫民
北京科技大学材料学院; 北京 100083
STUDY ON AXIOTAXY IN HIGH MANGANESE TRIP STEEL BY EBSD
YANG Ping; LU Fayun; MENG Li; MAO Weimin
School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
引用本文:

杨平 鲁法云 孟利 毛卫民. EBSD研究高Mn TRIP钢伪线织构[J]. 金属学报, 2009, 45(12): 1409-1413.
. STUDY ON AXIOTAXY IN HIGH MANGANESE TRIP STEEL BY EBSD[J]. Acta Metall Sin, 2009, 45(12): 1409-1413.

全文: PDF(3543 KB)  
摘要: 

对高Mn TRIP钢两类马氏体相变取向关系及变体选择进行EBSD取向成像分析时,在微区内经常观察到伪线织构, 并对其进行了分析. 结果表明, 各类伪线
织构都是相变时界面匹配的表现, 可由4种原因引起: 奥氏体内产生的ε马氏体中按K-S关系生成的6个α'马氏体变体造成;形变时奥氏体内增加的孪晶内形成的ε马氏体构成; 相变时两相对应点阵面力图匹配而造成的EBSD相鉴定过程规律性的误标所致;形变促进不同相的点阵面匹配造成. 此外, 对伪线织构在极图上的表现进行了分析.

关键词 EBSD 高锰钢马氏体相变 织构    
Abstract

An off–normal fiber–like texture, also regarded as the fourth texture, that is named axiotaxy. Axiotaxies concern the preferred grain orientations along the axes in crystallographic coordinate system, rather than the axes in sample coordinate system. They reflect the extent of phase boundary matching during, e.g., martensitic transformation or thin film deposited on single crystal substrates as well as the selection of variants. The excellent properties of high manganese TRIP steels with a good combination of strength and elongation attract great interest of automobile industry and
thus the research on this type of steels is increasing. The reason responsible for the super properties of the steels is mainly due to the presence of two types martensites ( α'– and ε–martensite) which can form either thermally during quenching or strain–induced. Therefore, the Axiotaxies related with these two types of martensites are more complicated and may show more information. This paper investigated the axiotaxies revealed by EBSD orientation mapping during the study of orientation relationship and variant selection in martensitic transformation of two high manganese TRIP steels with 18%Mn and 22%Mn together with 3%Si and 2%Al. It is shown that the quasi–fiber textures in these steels can be caused in 4 ways. First, they were caused by the α–martensite variants formed in an ε-martensite plate which were generated from an austenitic {111} plane by K–S relationship. The center of axiotaxy corresponds to the normal of habit plane {111}  and this type of axiotaxy was observed only in the pole figures of α'–martensite. Secondly, they were due to the  ε–martensite transformed from austenitic deformation twins, this indicates an important role of twinning in martensitic transformation. Thirdly, they were caused by reularly mis–indexing of phases due to the strain aroused by martensitic trans-
formation, namely, the real axiotaxy existed in α'–martensite was transferred erroneously into the pole figures of  α'–austenite or ε–martensite. Fourthly, they may also be due to the accommodation of lattice planes for low misfits by means of external deformation. All of axiotaxies detected were related with martensitic transformation and the significance of analyzing axiotaxy lies in that it reveals much information about phase boundary match, vrint selection or the effects of deformation during quenching or during deformation.

Key wordsEBSD    high manganese steel    martensitic transformtion    texture
收稿日期: 2009-08-19     
ZTFLH: 

TG146.2

 
基金资助:

国家自然科学基金资助项目50771019

作者简介: 杨平, 男, 1959年生, 教授

[1] Grassel O, Kruger L, Frommeyer G, Meyer W L. Int J Plast, 2000; 16: 1391
[2] Huang B X, Wan X D, Rong Y H, Wang L, Jin L. Mater Sci Eng, 2006; A438—440: 306
[3] Petein A, Jacques P J. Steel Res Int, 2004; 75: 724
[4] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[5] Gueler E, Kirindi T, Aktas H. J Alloys Compd, 2007; 440:168
[6] Kirindi T, G¨ueler E, Dikici M. J Alloys Compd, 2007; 433: 202
[7] Gey N, Petit B, Humbert M. Metall Mater Trans, 2005; 36A: 3291
[8] Verbeken K, Van Caenegem N, Verhaege M. Mater Sci Eng, 2008; A481—482: 471
[9] Kitahara H, Ueji R, Ueda M, Tsuji N, Minamino Y. Mater Charact, 2005; 54: 378
[10] Detavernier C, Ozcan A S, Jordan–Sweet J, Stach E A, Tersoff J, Ross F M, Lavoie C. Nature, 2003; 426: 641

[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[6] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] 杨平, 王金华, 马丹丹, 庞树芳, 崔凤娥. 成分对真空脱锰法相变控制高硅电工钢{100}织构的影响[J]. 金属学报, 2022, 58(10): 1261-1270.
[10] 丁宁, 王云峰, 刘轲, 朱训明, 李淑波, 杜文博. 高应变速率多向锻造Mg-8Gd-1Er-0.5Zr合金的微观组织、织构及力学性能[J]. 金属学报, 2021, 57(8): 1000-1008.
[11] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[12] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[13] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[14] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[15] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.