Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1414-1420    
  论文 本期目录 | 过刊浏览 |
基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化
霍亮;韩志强;柳百成
清华大学机械工程系; 先进成形制造教育部重点实验室; 北京 100084
MODELING AND SIMULATION OF MICROSTRUCTURE EVOLUTION OF CAST MAGNESIUM ALLOYS USING CA METHOD BASED ON TWO SETS OF MESH
HUO Liang; HAN Zhiqiang; LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

霍亮 韩志强 柳百成. 基于两套网格的CA方法模拟铸造镁合金凝固过程枝晶形貌演化[J]. 金属学报, 2009, 45(12): 1414-1420.
, . MODELING AND SIMULATION OF MICROSTRUCTURE EVOLUTION OF CAST MAGNESIUM ALLOYS USING CA METHOD BASED ON TWO SETS OF MESH[J]. Acta Metall Sin, 2009, 45(12): 1414-1420.

全文: PDF(2848 KB)  
摘要: 

提出了一种基于两套网格的元胞自动机(CA)模型, 用来模拟铸造镁合金凝固过程的枝晶形貌演化. 模型中采用的两套网格, 一套为四边形正交网格, 用来求解溶质扩散方程;另一套为正六边形网格, 用来进行CA方法的计算, 以反映镁合金枝晶形貌的六重对称特征. 模型中, 枝晶尖端生长驱动力由界面平衡溶质浓度和求解扩散方程得出的界面实际溶质浓度的差值决定. 应用该模型计算了AZ91D镁合金自由凝固条件下的单个等轴晶生长和定向凝固条件下的柱状枝晶生长以及Mg-10Gd-2Y-0.5Zr(质量分数, %)镁合金多晶粒等轴晶生长. 将模拟结果与浇铸AZ91D镁合金的块状试件和Mg-10Gd-2Y-0.5Zr合金的阶梯试件进行了对比.

关键词 镁合金 枝晶形貌 数值模拟 元胞自动机方法 六边形网格    
Abstract

The texture of Mg alloy dendrites is quite different from that of fcc or bcc metals because of the influence of hcp crystal lattice on the dendrite morphology evolutions during solidification. Although the simulations of dendrite morphologies for fcc or bcc metals by cellular automaton (CA) methods have been widely reported, CA simulations of magnesium alloys with hcp crystal lattice have just appeared in recent years. When performing the simulation of Mg alloy dendrites with a CA method on a square mesh, the artificial anisotropy of growth kinetics introduced by the square mesh makes it hard to reflect the texture of Mg alloy dendrites, which shows the six–fold symmetry instead of four–fold symmetry of bcc or fcc metal dendrites.

In the present paper, a two dimensional CA model has been developed for simulating the dendrite morphology evolution of castMg alloys. The model employs two sets of meshes to perform the numerical simulation, where a hexagonal mesh is used to perform CA calculation to reflect the texture of Mg alloy dendrites, and an orthogonal mesh is used to solve the mass transportation equation. The two sets of meshes are coupled by an interpolation method. By employing the two–set mesh method, the texture of Mg alloy dendrites is well reflected and the undesired artificial growth kinetics introduced by square mesh is avoided. In the model, the growth kinetics of dendrite tips was determined by the difference between local equilibrium and local actual compositions obtained by solving the solute transport equation. With this calculation method for growth kinetics, the solid fraction of interface CA cell can be obtained directly from the solute field, which decreases the computational cost greatly. The model was applied to simulate the single dendrite evolution and columnar dendrite growth of AZ91D Mg alloy, as well as multi–dendrite growth and grain size of Mg–10Gd–2Y–0.5Zr (mass fraction, %) alloy step–shaped castings. To validate the current model, permanent mold sample castings of AZ91D Mg alloy and step–shaped castings of Mg–10Gd–2Y–0.5Zr alloy were produced. Optical metallographic examinations were performed on specimens of these two Mg alloys, and grain sizes were measured on solution treated specimens of Mg–10Gd–2Y–0.5Zr alloy. The simulated and experimental results were compared.

Key wordsmagnesium alloy    dendrite morphology    numerical simulation    cellular automaton method    hexagonal mesh
收稿日期: 2009-05-06     
ZTFLH: 

111.4

 
基金资助:

国家重点基础研究发展计划项目2005CB724105和2006CB605208及国家自然科学基金项目50875143资助

作者简介: 霍亮, 男, 1982年生, 博士生

[1] Mordike B L, Eert T. Mater Sci Eng, 2001; A302: 37
[2] Gandin C A, Rappaz M. Acta Mater, 1994; 42: 2233
[3] Zhu M F, Hong C P. ISIJ Int, 2001; 41: 436
[4] Wang W, Lee P D, Mclean M. Acta Mater, 2003; 51: 2971
[5] Dahle A K, Lee Y C, Nave M D, Schaffer P L, StJohn D H. J Light Met, 2001; 1: 61
[6] Bottger B, Eiken J, Ohno M, Klaus G, Fehlbier M, Schmid–Fetzer R, Steinbach I, B¨uhrig–Polaczek A. Adv Eng Mater, 2006; 8: 241
[7] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2003; 34A: 367
[8] Shan B W. PhD thesis, Northwestern Polytechnical University, xi’an, 2009
(单博炜. 西北工业大学博士论文, 西安, 2009)
[9] Dong H B, Lee P D. Acta Mater, 2005; 53: 659
[10] Nastac L. Acta Mater, 1999; 47: 4253
[11] Huo L, Han Z Q, Liu Z Y, Liu B C. Mater Sci Forum,2007; 561–565: 1797
[12] Fu Z N, Xu Q Y, Xiong S M. Chin J Nonferrous Met,2007; 17: 1567
(付振南, 许庆彦, 熊守美. 中国有色金属学报, 2007; 17: 1567)
[13] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741
[14] Stefanescu D M. Science and Engineering of Casting Solidification. London: Kluwer Academic/Plenum Publishers,2002: 149
[15] Sasikumar R, Sreenivasan R. Acta Metall Mater, 1994; 42:2381
[16] Beltran–Sanchez L, Stefanescu D M. Int J Cast Met Res, 2002; 15: 251
[17] Th´evoz P, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311
[18] Liu Z Y. PhD thesis, Tsinghua University, Beijing, 2006
(刘志勇. 清华大学博士学位论文, 北京, 2006)
[19] Guo Y C, Li J P, Li J S, Yang Z, Zhao J, Xia F, Liang M X. J Alloys Compd, 2008; 450: 446
[20] Huo L, Han Z Q, Liu B C. The 2nd Int Conf on Advances in Solidification Processes. Leoben, Austria, 2008 (in press)

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[6] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[7] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[13] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[14] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.
[15] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.