Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 573-578    
  论文 本期目录 | 过刊浏览 |
TWIP钢不同温度变形的力学性能变化规律及机理研究
王书晗;刘振宇;张维娜;王国栋
(东北大学轧制技术与连轧自动化国家重点实验室; 沈阳 110004)
INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL
WANG Shuhan; LIU Zhenyu; ZHANG Weina; WANG Guodong
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
全文: PDF(1035 KB)  
摘要: 

通过控温拉伸实验分析了在298, 373, 473和673 K温度下变形时, TWIP钢(Fe--25Mn--3Si--3Al)力学性能和显微组织的变化规律. 结果表明, TWIP钢的强度和延伸率均随温度的升高而降低. 通过热力学公式对不同温度下TWIP钢层错能$\it\Gamma$的估算可以推断, 温度T≥673 K时, Γ≥76 mJ/m2, 滑移为TWIP钢主要的变形机制; 298 K≤ T≤373 K时,  21 mJ/m2Γ≤34 mJ/m2, 孪生为TWIP钢主要的变形方式, 此时产生“TWIP”效应, 可获得较高的加工硬化速率, 从而获得高强度及高塑性.

关键词 形变孪晶 高温变形 变形机制 层错能    
Abstract

The TWIP (twinning induced plasticity) steel is a new developed super toughness steel. In the TWIP steel, deformation twinning is the dominate mechanism controlled by stacking fault energy (SFE) in austenitic phase during plastic deformation. Since SFE depends on temperature, it has a major influence on mechanical properties of alloys. The evolution of deformation mode in Fe–Mn–C austenitic steels with temperature and SFE has been extensively reported in literatures. However, in Fe–Mn–Al–Si austenitic steels, the literatures only focused attention on the deformation structure and mechanical properties of Fe–28Mn–1Al–0.5Si and Fe–24Mn–3.5Al–0.4Si steels in compression under different temperatures. The relationship between deformation structure and temperature for Fe–Mn–Al–Si TWIP steel under tensile test has not yet been established. More importantly, a thorough investigation on dependence of deformation mechanism on deformation temperature and SFE is stilllacking, which is one of the key factors in alloy design and new processing exploitation. In this paper, the mechanical properties of Fe–25Mn–3Si–3Al TWIP steel and the microstructure evolution with temperature have been investigated through tensile testing at 298, 373, 473 and 673 K. It was found that the strength and elongation decrease with deformation temperatures increasing. The SFE of the TWIP steel, Γ, at different temperatures have been calculated. It was pointed out that when 21 mJ/m2Γ ≤34 mJ/m2 in 298 K≤ T ≤373 K, the deformation twinning is a main deformation mechanism, while the slipping is a predominant deformation mode when Γ ≥76 mJ/m2 in T ≥673 K. The SFE value was found to decrease with temperature decreasing, and lower values of SFE would promote deformation twin production and inhibit slip. Deformation twins formed in plastic deformation act as obstacles to dislocations, resulting in high strain hardening effect so that both high elongation and ultimate tensile strength can be obtained at relatively low temperatures.

Key wordsdeformation twin    high temperature deformation    deformation mechanism    stacking fault energy
收稿日期: 2008-10-30     
ZTFLH: 

TG115.213

 
基金资助:

自然科学基金项目50873141及国家重点基础研究发展计划项目2004CB619108资助

通讯作者: 王书晗     E-mail: nmwangshuhan@163.com
Corresponding author: WANG Shuhan     E-mail: nmwangshuhan@163.com
作者简介: 王书晗, 女, 1982年生, 博士生

引用本文:

王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.
YU Shu-Han, LIU Zhen-Yu, ZHANG Wei-Na, YU Guo-Dong. INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL. Acta Metall Sin, 2009, 45(5): 573-578.

链接本文:

https://www.ams.org.cn/CN/      或      https://www.ams.org.cn/CN/Y2009/V45/I5/573

[1] Frommeyer G, Brux U, Neumann P. ISIJ Int, 2003; 43:438
[2] Gr¨assel O, Kruger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Allain S, Chateau J–P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158
[4] Hokka M, Kuokkala V–T, Curtze S, Vuoristo T, Apostol M. J Phys IV Fr, 2006; 134: 1301
[5] Li L, Hsu T Y. Calphad, 1997; 21: 443
[6] Yoo J D, Park K T. Mater Sci Eng, 2008; A496: 417
[7] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O.Mater Sci Eng, 2008; A483–484: 184
[8] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M. J Phys IV Fr, 2006; 134: 1301
[9] Huang B X, Wang X D, Rong Y H, Wang L, Jin L. Mater Sci Eng, 2006; A438–440: 306
[10] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[11] Kalidindi S R. Int J Plast, 1998; 14: 1265
[12] Danaf E E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; A30: 1223
[13] Zhao M C, Hanamura T, Qiu H, Nagai K, Yang K. Scr Mater, 2006; 54: 1385

[1] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[2] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[3] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[4] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[5] 吉宗威,卢松,于慧,胡青苗,Vitos Levente,杨锐. 第一性原理研究反位缺陷对TiAl基合金力学行为的影响[J]. 金属学报, 2019, 55(5): 673-682.
[6] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[7] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[8] 肖伯律, 黄治冶, 马凯, 张星星, 马宗义. 非连续增强铝基复合材料的热变形行为研究进展[J]. 金属学报, 2019, 55(1): 59-72.
[9] 郭祥如, 孙朝阳, 王春晖, 钱凌云, 刘凤仙. 基于三维离散位错动力学的fcc结构单晶压缩应变率效应研究[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] 刘晏宇, 毛萍莉, 刘正, 王峰, 王志. Schmid因子的理论计算及其在镁合金高速变形过程中的应用[J]. 金属学报, 2018, 54(6): 950-958.
[11] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[12] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[13] 赵燕春, 孙浩, 李春玲, 蒋建龙, 毛瑞鹏, 寇生中, 李春燕. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为[J]. 金属学报, 2018, 54(12): 1818-1824.
[14] 谢君, 于金江, 孙晓峰, 金涛. K416B镍基铸造高温合金的700 ℃高周疲劳行为*[J]. 金属学报, 2016, 52(3): 257-263.
[15] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.