Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 490-496    
  论文 本期目录 | 过刊浏览 |
厚板铝合金搅拌摩擦焊接头不同状态微观组织与力学性能
徐韦锋1;刘金合1;栾国红2;董春林2
1.西北工业大学材料学院; 西安 710072
2.中国搅拌摩擦焊接中心; 北京 100024
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED JOINTS OF ALUMINIUM ALLOY THICK PLATE WITH DIFFERENT WELDING STATES
XU Weifeng1; LIU Jinhe1;LUAN Guohong2; DONG Chunlin2
1.School of Materials and Engineering; Northwestern Polytechnical University; Xi’an 710072
2.China FSW Center; Beijing 100024
引用本文:

徐韦锋 刘金合 栾国红 董春林. 厚板铝合金搅拌摩擦焊接头不同状态微观组织与力学性能[J]. 金属学报, 2009, 45(4): 490-496.
, , , . MICROSTRUCTURES AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED JOINTS OF ALUMINIUM ALLOY THICK PLATE WITH DIFFERENT WELDING STATES[J]. Acta Metall Sin, 2009, 45(4): 490-496.

全文: PDF(3347 KB)  
摘要: 

对14 mm厚2219--O铝合金板进行了搅拌摩擦焊接, 研究了无缺陷、有缺陷和经焊后热处理的接头分层切片的微观组织、力学性能和断裂方式. 结果表明: 无缺陷接头的抗拉强度σb和屈服强度σ0.2分别从上部的160.8和96.8 MPa下降至底部的146和86 MPa; 有缺陷接头的σbσ0.2分别从上部的132.9和94 MPa下降至底部的126和78.8 MPa; 经焊后热处理的试样中部的σb最高, 达到243.8 MPa, 而上部的σ0.2最高, 为123.3 MPa; 延伸率δ则依次升高, 无缺陷、有缺陷和热处理后接头的δ分别由上部的6.7%, 4.8%和7.5%升高至底部的10.1%, 8.5%和14%. 经焊后热处理的接头焊核区晶粒沿厚度方向更均匀和细小, 力学性能明显提高, 并以韧性断裂为主, 显微硬度波动很小. 对于有缺陷接头, 焊接缺陷严重降低了接头的力学性能, 主要以韧--脆混合方式断裂, 各分层的显微硬度均低于无缺陷接头.

关键词 搅拌摩擦焊接 厚板铝合金 接头 微观组织 力学性能    
Abstract

Compared to fusion welding processes used in joining structural aluminum alloy, the friction stir welding (FSW) is an emerging solid state welding process which can lead to less distortion and residual stress owing to low heat input characteristic. In order to apply FSW in the aerospace field, the 2219 aluminum alloy in Al–Cu series, which has high–strength–weight ratio, resistance to stress corrosion cracking and superior cryogenic properties, and is an ideal material in the construction of liquid cryogenic rocket fuel tanks, has been welded in O condition (full annealing). Microstructures of weld nugget zones and mechanical properties of the slices in the three kinds of thick plate FSW joints, which are the flaw–free joint, the joint with flaw and the flaw–free joint after post weld heat treatment (PWHT), were studied. The tensile testing shows that the tensile strength σb and yield strength σ0.2 decrease from 160.8 and 96.8 MPa of the top part of the flaw free joint to 146 and 86 MPa of the bottom part, respectively, σb and σ0.2 decrease from 132.9 and 94 MPa of the top part of the joint with flaw to 126 and 78.8 MPa of the bottom part, respectively. σb of the middle of the flaw–free joint after PWHT is 243.8 MPa and σ0.2 of the top of the flaw–free joint after PWHT is 123.3 MPa, they are higher than those of the other parts.  increases from 6.7%, 4.8% and 7.5% of the top parts of the flaw–free joint, joint with flaw and flaw–free joint after PWHT to 10.1%, 8.5% and 14% of the bottom parts of the joints, respectively. For the PWHT (500 ℃/50 min + 160℃/20 h) flaw–free joint, grains are more uniform and finer along the thickness direction in weld nugget zone, fractographs present deep dimples, most of the failure is ductile fracture, and the microhardness distribution has no obvious fluctuation. For the joint with flaw the mechanical properties decrease sharply, fractograph exhibits a ductile–brittle fracture morphology and the microhardnesses in slices are lower than those of the flaw–free joints.

Key wordsfriction stir welding    thick aluminum plate    joint    microstructure    mechanical property
收稿日期: 2008-10-13     
ZTFLH: 

TG146.2

 
基金资助:

中国搅拌摩擦焊接中心资助项目CFSWT--050410--55

作者简介: 徐韦锋, 男, 1982年生, 博士生
[1] Trzil J J. Weld J, 1969; 44: 395 [2] Nunes A C. Weld J, 1984; 63(9): 27 [3] Cabibbo M, McQueen H J, Evangelista E, Spigarelli S, Paola M D, Falchero A. Mater Sci Eng, 2007; A460–461:86 [4] Elangovan K, Balasubramanian V. Mater Sci Eng, 2007; A459: 7 [5] Peel M, Steuwer A, Preuss M, Withers P J. Acta Mater, 2003; 51: 4791 [6] Chen Y C, Liu H J, Feng J C. Trans Nonferrous Met Soc China, 2005, 15: 75 [7] Xu W F, Liu J H, Luan G H, Dong C L. Acta Metall Sin, 2008; 44: 1404 (徐韦锋, 刘金合, 栾国红, 董春林. 金属学报, 2008; 44: 1404) [8] Zhang Z, Zhang H W. J Mater Process Technol, 2009; 209(1): 241 [9] Hassan Kh A A, Norman A F, Price D A, Prangnell P B. Acta Mater, 2003; 51: 1923 [10] Ren S R, Ma Z Y, Chen L Q. Acta Metall Sin, 2008; 44: 626 (任淑荣, 马宗义, 陈礼清. 金属学报, 2008; 44: 626) [11] Tweed J H, Knott J F. Acta Metall, 1987; 35: 1401
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.