Please wait a minute...
金属学报  2008, Vol. 44 Issue (6): 686-692     
  论文 本期目录 | 过刊浏览 |
基于动态相变的热轧C-Mn-Al-Si系TRIP钢组织演变
尹云洋;杨王王月;李龙飞;杨王玥;孙祖庆;王西涛
北京科技大学材料科学与工程学院
Study on Microstructure Evaluation of hot rolled C-Mn-Si-Al TRIP steel based on dynamic transformation of undercooled austentie
;;;;
北京科技大学
引用本文:

尹云洋; 杨王王月; 李龙飞; 杨王玥; 孙祖庆; 王西涛 . 基于动态相变的热轧C-Mn-Al-Si系TRIP钢组织演变[J]. 金属学报, 2008, 44(6): 686-692 .

全文: PDF(5071 KB)  
摘要: 通过热模拟压缩实验, 研究了基于过冷奥氏体动态相变的C--Mn--Al--Si 系热轧TRIP钢的组织演变 规律. 结果表明, 在过冷奥氏体动态相变过程中, 铁素体相变速率较快, 生成铁素体的体积分数与应变量有着一定的对应关系, 铁素体晶粒细小且未相变的奥氏体更加分散. 在贝氏体等温处理时, 过冷奥氏体动态相变后较大尺寸的奥氏体能够较快地发生贝氏体相变, 但生成的贝氏体束尺寸较小, 位向较为混乱; 而位于相邻铁 素体晶粒间, 尺寸在0.5---1.5 um之间的细小奥氏体岛稳定性较高, 不易于发生贝氏体相变. 通过过冷奥氏 体动态相变和随后的等温贝氏体处理, 可以获得晶粒细小的铁素体、体积分数较高的残余奥氏体、贝氏体和残余 奥氏体分布更加弥散的热轧TRIP钢.
关键词 过冷奥氏体动态相变TRIP钢铁素体贝氏体    
Abstract:Abstract: The microstructure evolution of hot rolled C-Mn-Al-Si TRIP steel based on dynamic transformation of undercooled austenite was investigated by uniaxial hot compression tests on a Gleeble1500 simulation test machine. The results showed that the volume fraction of ferrite transformed during dynamic transformation of undercooled austenite was determined by applied strain,at the meantime, the formation of ferrite was significantly accelerated and the remained austenite was much dispersed. When the isothermal bainitic treatment was implemented after the dynamic transformation of undercooled austenite, the remained austenite which had relatively larger size transformed quickly to bainite with fine structure and chaotic orientation, the small austenite islands with grain size between 0.5~1.5µm located among ferrite had higher stability and rather difficult transformed to bainite. By dynamic transformation of undercooled austenite and the subsequent isothermal bainitic transformation, a desired microstructure of hot rolled TRIP Steel was obtained, which characterized by fine grain size of ferrite, high volume fraction of retained austenite and the uniform distribution of bainite and retained austenite.
Key wordsdynamic transformation of supercooled austentie    TRIP steel    ferrite    bainite    retained austenite
收稿日期: 2007-11-05     
ZTFLH:  TG142.3  
[1]Ushilda K.Scand J Metall,1999,28:33
[2]Tosal Martinez L,Vanderschueren D,Jacobs S,Van dcputte S.Steel Res,2001;72:412
[3]Bcllhouse E M,Mertens A I M,McDermid J R.Mater Sc Eng,2007;A463:147
[4]Pichlcr A,Stiaszny P.Steel Res,1999;70:457
[5]Girault E,Mcrtens A,Jacques P,Houbaert Y,Verlinden B,Van Humbeeck J.Scr Mater,2001;44:885
[6]Barbe L,Verbeken K,Wettinck E.ISIJ lnt,2006;46:1251
[7]Meyer D,Vanderschueren D,De Cooman B C.ISIJ lnt 1999;39:813
[8]Jacques P J,Girault E,Mertens A,Verlinder B,Van Hum beeck J,Delannay F.ISIJ lnt,2001;41:1068
[9]Basuki A,Aernoudt E.Scr Mater,1999;40:1003
[10]Timokhina I B,Hodgson P D,Pereloma E V.Metall Mate Trans,2003;34A:1599
[11]Ryu H B,Speer J G,Wise J P.Metall Mater Trans,2002 33A:2811
[12]Yang W Y,Qi J J,Sun Z Q,Yang P.Acta Metall Sin 2004;40:135 (杨王玥,齐俊杰,孙祖庆,杨平.金属学报,2004:40:135)
[13]Yang P,Fu Y Y,Cui F E,Sun Z Q.Acta Mctall Sin,2001; 37:592 (杨平,傅云义,崔凤娥,孙祖庆.金属学报.2001:37:592)
[14]Mahieu J,Maki J,De Cooman B C,Claessens S.Metall Mater Trans,2002;33A:2573
[15]Mintz B.lnt Mater Rev,2001;46:169
[16]Miller R L,Trans ASM,1964;57:892
[17]Sung-Joon K,Chang G L,Ildong C,Sunghak L.Metall Mater Trans,2001;32A:505
[18]Qi J J,Yang W Y,Sun Z Q,Zhang X Z,Dong Z F.Acta Metall Sin,2005;41:605 (齐俊杰,杨王玥,孙祖庆,章晓中,董志峰.金属学报,2005;41:605)
[19]De Meyer M,Mahicu J,De Cooman B C.Mater Sci Tech- nol,2002;18:1121
[20]Sakuma Y,Matsumura O,Takechi tl.Metall Trans,1991; 22A:489
[21]Lee Y K,Shin tt C,Jang Y C,Kim S H,Choi C S.Set Mater,2002;47:805
[22]Bhadeshia H K D H,Waugh A R.Aeta Metall,1982;30: 775
[23]ttanzaki A Z,Hodgson P D,Yue S.Metall Mater Trans, 1997;28A:2405
[24]Timokhina I B,Hodgson P D,Pcreloma E V.In:De Cooman B C ed.,Proc of Int Conf on TRIP Aided High Strength Ferrous Alloys,Wisscnschafts Vcrlag Mainz GmbH,Aachen,2002:181
[25]Tsuzaki K,Fukasaku S,Tomota Y,Maki T.Mater Trans, JIM,1991;32:222
[26]Singh S B,Bhadeshia H K D H.Mater Sci Technol,1996; 12:610
[27]Shipway P H,Bhadeshia H K D H.Mater Sei Technol, 1995;11:1116
[28]Luo H W,Zhao L,Kruijver S O,Sictsma J,Van der Zwaag S.ISIJ Int,2003;43:1219
[29]Jacques P,Cornet X,Harlot Ph,Ladricre J,Delannay F. Metall Mater Trans.1998;29A:2383
[30]Kawano O,Wakita.J,Esaka K,Abe It.Iron Steel Inst Jpn Int,1996;82:232
[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[3] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[4] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[7] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[8] 彭俊, 金鑫焱, 钟勇, 王利. 基板表层组织对Fe-16Mn-0.7C-1.5Al TWIP钢可镀性的影响[J]. 金属学报, 2022, 58(12): 1600-1610.
[9] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[10] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[11] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[12] 刘曼, 胡海江, 田俊羽, 徐光. 变形对超高强贝氏体钢组织和力学性能的影响[J]. 金属学报, 2021, 57(6): 749-756.
[13] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[15] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.