Please wait a minute...
金属学报  2008, Vol. 44 Issue (6): 681-685     
  论文 本期目录 | 过刊浏览 |
低加热速率下ZG06Cr13Ni4Mo低碳马氏体不锈钢回火过程的相变研究
王培;陆善平;李殿中;康秀红;李依依
中国科学院金属研究所
INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE
;;;
中国科学院金属研究所
引用本文:

王培; 陆善平; 李殿中; 康秀红; 李依依 . 低加热速率下ZG06Cr13Ni4Mo低碳马氏体不锈钢回火过程的相变研究[J]. 金属学报, 2008, 44(6): 681-685 .
, , , , . INVESTIGATION ON PHASE TRANSFORMATION OF ZG06Cr13Ni4Mo IN TEMPERING PROCESS WITH LOW HEATING RATE[J]. Acta Metall Sin, 2008, 44(6): 681-685 .

全文: PDF(898 KB)  
摘要: 利用热膨胀仪、透射电子显微镜(TEM)、X射线能谱仪 (EDX)、X射线衍射仪(XRD)等对ZG06Cr13Ni4Mo 在0.05℃/s低加热速率下回火过程中逆变奥氏体的产生机理进行了研究. 结果表明:低加热速率下 ZG06Cr13Ni4Mo在As---A f 区间回火产生的逆变奥氏体中富集了奥氏体化元素Ni, 且不含高密度位错, 马氏体向逆变奥氏体的转变是扩散型相变.高于600℃回火得到的逆变奥氏体不稳定, 在随后冷却过程中部分发生马氏体转 变.一次回火在620℃时能得到最大量的逆变奥氏体; 620---660℃ 一次回火生成的逆变奥氏体在冷却过程中产 生大量弥散分布的马氏体, 增加了600℃二次回火时逆变奥氏体的形核位置, 使二次回火后逆变奥氏体含量显 著增加.
关键词 低碳马氏体不锈钢逆变奥氏体    
Abstract:In order to clarify martensite to austenite phase transformation mechanism of ZG06Cr13Ni4Mo during tempering between As and Af with low heating rate of 0.05℃/s, a systematic study by dilatometer, XRD, TEM and EDX was carried out. The experimental results indicate that the reversed austenite generated during tempering is rich in Ni and does not have high density dislocation, which demonstrate the martensite to austenite phase transformation with low heating rate proceeds by diffusion. The reversed austenite generated over 600℃ will partially transform to martensite during subsequent cooling. One-stage tempering can get the maximal amount of reversed austenite at 620℃. Two-stage tempering system 620℃~660℃ + 600℃ can dramatically increase the amount of reversed austenite, because the new martensite transformed from unstable reversed austenite at first-stage tempering at 620℃~660℃ provides dispersive nucleation sites for the reversed austenite in the second-stage tempering at 600℃.
Key wordsZG06Cr13Ni4Mo    reversed austenite    mechanism of phase transformation    tempering
收稿日期: 2007-11-05     
ZTFLH:  TG142.24  
[1]Friis W L,Noren T M I.US Pat 3378367,1968
[2]Bilmes P D,Solari M,Llorente C L.Mater Charact,2001; 46:285
[3]Cesnouin C,Hazarabedian A, Bruzzoni P,Ovejero-Garcta J,Blimps P,Llorente C.Corros Sci,2004;46:1633
[4]Bilmes P,Llorente C,Ipifia J P.J Mater Eng Perform, 2000;9:609
[5]Iwabuchi Y.JSME Int J,2003;46A:441
[6]Geng C W.Phys Exam Test,1992;59:8 (耿承伟.物理测试,1992;59:8)
[7]Larson J A,Fisher R.AFS Trans,1979;63:113
[8]Hubackova J,Cihal V,Mazanec K. J Mater Technol,1984; 15:411
[9]Zhang Y.Acta Me,all Sin,1982;18:395 (张一.金属学报,1982;18:395)
[10]Kapoor R,Kumar L,Batra I S.Mater Sci Eng,2003; A352:318
[11]Leem D S,Lee Y D,Jun J H,Choi C S.Scr Mater,2001; 45:767
[1] 张玉妥,李丛,王培,李殿中. 9Ni钢拉伸性能的同步辐射高能X射线原位研究*[J]. 金属学报, 2016, 52(4): 403-409.
[2] 张盛华,王培,李殿中,李依依. ZG06Cr13Ni4Mo马氏体不锈钢中TRIP效应的同步辐射高能X射线原位研究*[J]. 金属学报, 2015, 51(11): 1306-1314.