Please wait a minute...
金属学报  2008, Vol. 44 Issue (4): 409-413     
  论文 本期目录 | 过刊浏览 |
ECAP制备高强高韧马氏体耐热钢
张凌义;杨钢;黄崇湘;陈为亮;王立民
钢铁研究总院
High strength and high toughness heat-resistant martensitic steel produced by ECAP
;;
钢铁研究总院
引用本文:

张凌义; 杨钢; 黄崇湘; 陈为亮; 王立民 . ECAP制备高强高韧马氏体耐热钢[J]. 金属学报, 2008, 44(4): 409-413 .

全文: PDF(1260 KB)  
摘要: 研究了热轧态1Cr16Co5Ni2MoWVNbN马氏体耐热钢经一道次等径角挤压(ECAP)变形+680℃2 h空冷处理后的微观结构和力学性能. 结果表明: 经ECAP变形后, 马氏体板条大部分已碎化成亚晶粒和位错胞, 第二相纳米粒子(M23C6)分布更弥散均匀; 经随后的退火处理, 发生了回复和部分再结晶, 位错密度有所降低, 形成大量尺寸仅几百纳米的等轴亚晶粒. ECAP变形后材料的屈服强度有很大提高(提高至1400 MPa), 但延伸率和静力韧度均大幅度下降(分别降至7.3%和100 MJ/m3); 随后的退火处理可恢复其塑性(15.4%), 其强度(1044 MPa)和静力韧度(181.6 MJ/m3)均较初始态(922 MPa, 160.7 MJ/m3)高.
关键词 耐热钢等径角挤压变形强度塑性    
Abstract:The microstructures and mechanical properties ofЭП866 martensite heat-resistant steel submitted to equal channel angular pressing (ECAP) for one pass and subsequent heat treatment were investigated. It was hound that most of the lath martensite has been broken, and the nano-precipitant distributed more uniformly after ECAP deformation. By annealing at 680℃ for 2h, the dislocation density decreased and a great deal of equiaxed subgrains with sizes of several hundred of nanometers were produced, which could be attributed to the dislocation recovery and recrystallization. The yield strength of the ECAPed sample increased significantly, but its ductility decreased a lot. After subsequent annealing treatment, the ductility of the ECAP steel can be improved to the level of initial state. Both the strength and static toughness of the steel after ECAP deformation and subsequent heat treatment can be increased simultaneously compared with those of initial state.
Key wordsheat-resistant steel    Equal Channel Angular Pressing (ECAP)    Strength    Plasticity    Static Toughness
收稿日期: 2007-08-02     
ZTFLH:  TG142.7  
[1]Valiev R Z.Nature,2002;419:887
[2]Yong Q L.Second-Phase in Iron & Steel Materials.Bei- jing:Metallurgical Industry Press,2006:11 (雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006:11)
[3]Valiev R Z,Islamgaliev R K,Alexandrov I V.Prog Mater Sci,2000;45:103
[4]Huang C X,Wang K,Wu S D,Zhang Z F,Li G Y,Li S X.Acta Mater,2006;54:655
[5]Huang C X,Gao Y L,Yang G,Wu S D,Li G Y,Li S X. J Mater Res,2006;21:1687
[6]Fukuda Y,Ohishi K,Horita Z,Lang T G.Ultrafine Grained Steels.Tokyo:Iron and Steel Institute of Japan, 2001:156
[7]Gong Z H,Wang B F,Yang G.Spec Steel,2005;26(1):24 (龚志华,王宝峰,杨钢,特殊钢,2005;26(1):24)
[8]Zhao X C,Yao X C,Liu X Y.J Mater Sci Eng,2006;24: 396 (赵西成,姚筱春,刘晓燕.材料科学与工程学报,2006;24:396)
[9]Park K T,Kim Y S,Lee J G,Shin D H.Mater Sci Eng, 2000;A293:165
[10]Shin D H,Kim W G,Ahn J Y,Park K T,Kim N J.Metall Ital,2006;5:49
[11]Shin D H,Seo C W,Kim J,Park K T,Choo W Y.Scr Mater,2000;42:695
[12]Suc J Y,Kim H S,Park J W,Chang J Y.Scr Mater, 2001;44:677
[13]Chinh N Q,Horváth G,Horita Z,Langdon T G.Acta Mater,2004;52:3555
[14]Huang C X,Wu S D,Li G Y,Liu T,Jiang C B,Li S X. Acta Metall Sin,2004;40:1165 (黄崇湘,吴世丁,李广义,刘腾,姜传斌,李守新.金属学报,2004;40:1165)
[15]Hollomon J H.TMS AIME,1945;162:268
[16]William D,Callister J.Fundamentals of Materials Sci- ence and Engineering.New York:John Wiley & Sons Inc,2001:64
[17]Zhao Y H,Liao X Z,Sheng C,Ma E,Zhu Y T.Adv Mater, 2006;18:2280
[18]Cabibbo M,Evangelista E,Vedani M.Metall Mater Trans,2005;36A:1353
[19]Kim Y G,Hwang B,Lee S,Kim W G,Shin D H.J Korean Inst Met Mater,2005;43(1):16
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[9] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[12] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[13] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[14] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[15] 王韬, 龙弟均, 余黎明, 刘永长, 李会军, 王祖敏. 超高压烧结制备14Cr-ODS钢及微观组织与力学性能[J]. 金属学报, 2022, 58(2): 184-192.