Please wait a minute...
金属学报  2008, Vol. 44 Issue (4): 397-402     
  论文 本期目录 | 过刊浏览 |
AZ451镁合金薄带的组织和力学性能研究
陈洪美;Suk-Bong Kang;于化顺;闵光辉
山东大学材料科学与工程学院
Microstructure and performance of AZ4.51-Ca magnesium alloy sheets
Chen Hongmei;Suk-Bong Kang;Huashun Yu;Guanghui Min
山东大学
引用本文:

陈洪美; Suk-Bong; Kang; 于化顺; 闵光辉 . AZ451镁合金薄带的组织和力学性能研究[J]. 金属学报, 2008, 44(4): 397-402 .
, , , , . Microstructure and performance of AZ4.51-Ca magnesium alloy sheets[J]. Acta Metall Sin, 2008, 44(4): 397-402 .

全文: PDF(1165 KB)  
摘要: 利用OM, SEM, TEM, 数字显微硬度计和电子万能试验机, 对常规轧制与铸轧法制备的AZ451镁合金薄带的显微组织和力学性能进行了分析. 常规铸锭轧制后仍为等轴晶组织,晶粒尺寸明显细化. 铸轧条带在350℃多道次轧制后显微组织由树枝晶转变为纤维状变形组织, 350 ℃/10 min热处理后合金发生再结晶, 得到等轴晶组织. 轧制后两种合金均具有良好的力学性能, 双辊铸轧合金的强度和延伸率均明显高于传统铸造合金的强度和延伸率, 两种合金1 mm厚薄带经350℃/10 min均匀化退火后的抗拉强度、屈服强度和延伸率分别为334.4 MPa, 229.3 MPa, 23.8%和270.8 MPa, 174.4 MPa, 10.8%. 两种合金的断口形貌均呈现河流花样, 撕裂棱和韧窝共存, 是明显的韧性断裂, 铸轧合金的韧窝更明显, 尺寸更小一些, 这与铸轧合金的组织更细小有关.
关键词 AZ451镁合金双辊铸轧热轧显微组织    
Abstract:Magnesium sheets produced by different process were studied in this paper. The microstructure and mechanical properties of the alloys were analyzed by optical microscope (OM)、scanning electron microscope (SEM)、transmission electron microscope (TEM) 、digital microhardness tester and electron test equipment. The conventional casting ingot and twin rolling casting strip were all can be hot rolled at certain temperature and get magnesium sheets with 1mm thickness had refined and uniform deformation microstructure, the alloys were recrystallized after heat treatment and got equiaxed structure. The alloys had good mechanical properties after hot rolling, the strength and the elongation of twin roll casting alloy were evident higher than those of the conventional casting alloy. The tensile strength, yield strength and elongation of twin roll casting alloy and conventional casting alloy after hot rolling and 350℃×10min annealing were 334.4MPa, 229.3MPa, 23.8%, and 270.8MPa, 174.4MPa, 10.8%, respectively. The fracture surface of the alloys all took on ductile fracture contains lacerated ridge and ductile sockets, but the twin roll casting alloy had more evidence and smaller ductile sockets, this because the grain size of twin roll casting alloy was finer than that of conventioanal casting alloy.
Key wordsAZ4.51-Ca alloy    twin roll casting    hot rolling    microstructure    mechanical properties
收稿日期: 2007-08-29     
ZTFLH:  TG146.2  
[1]Park S S,Lee J G,Park Y S,Kim N J.Mater Sci Forum, 2003;419-422:599
[2]Alien R V,East D R,Johnson T J,Borbidge W E,Liang D.In:Hryn J N,ed.,Magnesium Technology 2001,War- rendale,Pennsylvania:TMS,2001:75
[3]Armstrong R W.Acta Metall,1968;16:347
[4]Barnett M R,Keshavarz Z,Beer A G,Atwell D.Acta Mater,2004;52:5093
[5]Jain A,Duygulu O,Brown D W,ToméC N,Agnew S R. Mater Sci Eng,in press
[6]Chang T C,Wang J Y,Chia-Ming O,Lee S.J Mater Process Technol,2003;140:588
[7]Luo A A.Int Mater Rev,2004;49(1):13
[8]Suzuki A,Saddock N D,Jones J W,Pollock T M.Scr Mater,2004;51:1005
[9]Ninomiya R,Ojiro T,Kubota K.Acta Metall Mater,1995; 43:669
[10]Terada Y,Ishimatsu N,Sota R,Sato T,Ohori K.Mater Sci Forum,2003;419-422:459
[11]Mural T,Oguri H,Matsuoka S.Mater Sci Forum,2005; 488-489:515
[12]Seale G,Carter J,Verma R,Krajewski P,Essadiqi E, Javaid A,Galvani C,Zarandi F,Yue S.In:Beals R S, ed.,Magnesium Technology 2007,Warrendale,Pennsyl- vania:TMS,2007:17
[13]Yang P,Meng L,Mao W M,Cai Q W.Trans Mater Heat Treat,2005;26(2):34 (杨平,孟利,毛卫民,蔡庆武.材料热处理学报,2005;26(2):34)
[14]Yu K,Li W X.Met Heat Treat,2002;27(5):8 (余琨,黎文献.金属热处理,2002;27(5):8)
[15]Fu D F,Xu F Y,Xia W J,Liu T X,Chen Z H.Nat Sci J Xiangtan Univ,2005;27(4):57 (傅定发,许芳艳,夏伟军,刘天喜,陈振华.湘潭大学自然科学学报,2005;27(4):57)
[16]Pan F S,Han E H.High Properties Wrought Magnesium Alloy and Processing Technology.Beijing:Science Press, 2007:18 (潘复生,韩恩厚.高性能变形镁合金及加工技术.北京:科学出版社,2007:18)
[17]Bae G T,Park S S,Kang D H,Bae J H,Kim N J.In: Beals R S,ed.,Magnesium Technology 2007,Warrendale, Pennsylvania:TMS,2007:89
[18]Park S S,Oh Y S,Kang D H,Kim N J.Mater Sci Eng, 2007;A449-451:352
[19]Ninomiya R,Ojiro T,Kubota K.Acta Metall Mater,1995; 43:669
[20]Yang G Y,Hao Q T,Jie W Q,Jia W P,He Z.Acta Metall Sin,2005;41:933 (杨光昱,郝启堂,介万奇,贾文平,何志.金属学报,2005;41:933)
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.