Please wait a minute...
金属学报  2007, Vol. 43 Issue (12): 1268-1274     
  论文 本期目录 | 过刊浏览 |
应用Murty准则优化TC11钛合金高温变形参数
李鑫;鲁世强;王克鲁;赵为纲;李臻熙;曹春晓
南昌航空工业学院材料学院
OPTIMIZING HIGH TEMPERATURE DEFORMATION THERMOMECHANICAL PARAMETERS OF TC11 TITANIUM ALLOY BY MEANS OF MURTY CRITERION
;;;;;
江西省南昌市丰和南大道南昌航空工业学院材料学院
引用本文:

李鑫; 鲁世强; 王克鲁; 赵为纲; 李臻熙; 曹春晓 . 应用Murty准则优化TC11钛合金高温变形参数[J]. 金属学报, 2007, 43(12): 1268-1274 .
, , , , , . OPTIMIZING HIGH TEMPERATURE DEFORMATION THERMOMECHANICAL PARAMETERS OF TC11 TITANIUM ALLOY BY MEANS OF MURTY CRITERION[J]. Acta Metall Sin, 2007, 43(12): 1268-1274 .

全文: PDF(1383 KB)  
摘要: 在THERMECMASTOR-Z型热模拟试验机上对原始等轴组织的TC11钛合金进行热压缩实验,采用基于Murty准则的加工图技术研究该合金在990-1080℃、0.001-70 s-1变形参数范围内的微观变形机制和流变失稳现象, 并优化该合金的高温变形参数.结果表明, α+β两相区的较佳变形参数为990-1008℃、0.001-0.02 s-1, 以990℃、0.001 s-1附近为最佳, 其变形机制为超塑性. 在β单相区, 中等变形程度(ε<0.6)下的较佳参数为1030-1080℃、0.001-0.1 s-1, 以1060-1080℃、0.001 s-1附近为最佳, 其变形机制为动态再结晶; 而大变形程度(ε>0.6)下的较佳参数为1020-1060℃、0.004-0.6 s-1, 以1040-1050℃、0.016-0.07 s-1附近为最佳, 其变形机制也是动态再结晶.失稳区出现在β单相区内, 其参数范围为1000-1080℃、4.0-70 s-1, 在该失稳区会出现晶粒的不均匀变形;应变速率在0.001 s-1附近时, 在β单相区变形会出现β晶粒的动态粗化.
关键词 TC11钛合金Murty准则加工图微观组织    
Abstract:Hot compression tests of TC11 titanium alloy with equiaxed starting microstructure were conducted by using the Thermecmastor-Z hot working simulator. Microstructural deformation mechanisms and the manifestations of flow instability were investigated by means of processing map’ technology based on Murty criterion, and deformation thermomechanical parameters were optimized in the temperature range 990℃~1008℃ and strain rate range 0.001 s-1~70s-1. The results showed that,in phase,the desired deformation thermomechanical parameters were in 990℃~1008℃ and 0.001 s-1~0.02 s-1 with the deformation mechanism of superplasticity,and the optimum deformation thermomechanical parameters were in the order of 990℃ and 0.001 s-1.In phase,the desired deformation thermomechanical parameters were in 1030℃~1080℃ and 0.001 s-1~0.1 s-1 at the strains below 0.6 and in 1020℃~1060℃ and 0.004s-1~0.6 s-1 at the strains beyond 0.6,both of the two regions underwent dynamic recrystallization,and the corresponding optimum deformation thermomechanical parameters were respectively in 1060℃~1080℃and 0.001 s-1 , 1040℃~1050℃ and 0.016 s-1~0.07 s-1. The region of flow instability occurred in the temperature range 1000℃~1080℃and strain rate 4.0 s-1~70 s-1 in phase,and the manifestations of flow instability is non-uniform deformation of grains. In phase , dynamic growth of grains would occur approximately at the strain rate of 0.001 s-1.
Key words
收稿日期: 2007-03-26     
ZTFLH:  TG146.2  
[1]Zeng W D,Zhou Y G.Acta Metall Sin,2002;38:1273 (曾卫东,周义刚.金属学报,2002;38:1273)
[2]Prasad Y V R K,Gegel H L,Doraivelu S M,Malas J C, Morgan J T,Lark K A,Barker D R.Metall Trans,1984; 15A:1883
[3]Prasad Y V R K,Sasidhara S.Hot Working Guide:A Compendium of Processing Maps.Materials Park,OH: ASM international,The Materials Information Society, 1997:1
[4]Prasad Y V R K,Seshacharyulu T.Int Mater Rev,1998; 43:243
[5]Murty S V S N,Rao B N,Kashyap B P.Int Mater Rev, 2000;45:15
[6]Bao R Q,Huang X,Cao C X,Ke J.Mater Rev,2004; 18(7):26 (鲍如强,黄旭,曹春晓,柯俊.材料导报,2004;18(7):26)
[7]Spigarelli S,Cerri E,Cavaliere P,Evangelista E.Mater Sci Eng,2002;A327:144
[8]Zeng W D,Zhou Y G,Zhou J,Yu H Q,ghang X M,Xu B.Rare Met Mater Eng,2006;35:673 (曾卫东,周义刚,周军,俞汉清,张学敏,徐斌.稀有金属材料与工程,2006;35:673)
[9]Murty S V S N,Rao B N.Mater Sci Eng,1998;A254:76
[10]Ziegler H.In:Sneddon I N,Hill R eds.,Progress in Solid Mechanics,Amsterdam:North-Holland Publishing,1965: 91
[11]Murty S V S N,Rao B N,Kashyap B P.Corapos Sci Technol,2003;63:119
[12]Robi P S,Dixit U S.J Mater Process Technol,2003;142: 289
[13]Seshacharyulu T,Medeiros S C,Frazier W G,Prasad Y V R K.Mater Sci Eng,2000;A284:184
[14]Long M,Rack H J.Mater Sci Eng,1995;A194:99
[15]Seshacharyulu T,Medeiros S C,Morgan J T,Malas J C, Frazier W G,Prasad Y V R K.Mater Sci Eng,2000; A279:289
[16]Nieh T G,Wadsworth J.Int Mater Rev,1999;44:597
[1] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[11] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[12] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[13] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[14] 徐流杰, 宗乐, 罗春阳, 焦照临, 魏世忠. 难熔高熵合金的强韧化途径与调控机理[J]. 金属学报, 2022, 58(3): 257-271.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.