Please wait a minute...
金属学报  2008, Vol. 44 Issue (5): 636-640     
  论文 本期目录 | 过刊浏览 |
0Cr18Ni10Ti不锈钢焊接接头的显微硬度研究
许泽建;李玉龙; 李朋洲
西北工业大学航空学院
MICROHARDNESS INVESTIGATION OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINT
XU Ze-Jian;
西北工业大学航空学院
引用本文:

许泽建; 李玉龙; 李朋洲 . 0Cr18Ni10Ti不锈钢焊接接头的显微硬度研究[J]. 金属学报, 2008, 44(5): 636-640 .
, , . MICROHARDNESS INVESTIGATION OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINT[J]. Acta Metall Sin, 2008, 44(5): 636-640 .

全文: PDF(908 KB)  
摘要: 利用带有正四棱锥形金刚石压头的Vickers显微硬度计对0Cr18Ni10Ti不锈钢焊接接头的焊 缝、母材、熔合区及热影响区的压痕尺寸效应进行了研究, 实验载荷为0.098---4.9 N, 载荷保持时间均为10 s. 结果表明, 接头各区域的显微硬度在较小的载荷下随实验载荷的增加而减小, 当载荷 超过1.96 N时各区域硬度值基本保持恒定. 采用PSR模型对接头各区域硬度值随载荷的变化规律进行了较为准确的描述, 得到的HV PSR与1.96 N载荷下的实验结果间的误差小于3 %. 在2.94 N的 实验载荷下沿垂直接头方向连续进行了微压痕测试, 得到接头在不同位置处的显微硬度分布曲线, 并对接头的金相组织进行了观察和分析.
关键词 0Cr18Ni10Ti不锈钢焊接接头热影响区显微    
Abstract:Vicker’s microhardness tester equipped with diamond pyramid indenter was used to carry out microhardness tests on 0Cr18Ni10Ti stainless steel welded joint. Indentaion size effects (ISE) of different regions at the joint, including the weld metal (WM), base metal (BM), fusion zone (FZ) and heat-affected zone (HAZ) were studied at loads varying from 10 to 500 g for a constant dwell time of 10 s. The results show that the microhardness for each region of the welded joint decreases with the increasing load at comparatively low loads, and then tends to invariable as the indentation load exceeds 200 g. The PSR model was adopted to accurately describe the variation of the hardness as a function of indentation test load. The error between the tested hardness at 200 g of applied load and the calculated value using this model is less than 3%. Indentation tests were also successively performed across the welded joint to evaluate the distribution of the microhardness for different regions of the welded joint and optical microstructures are observed and analyzed. The yield stress distribution of the welded joint was also calculated according to its relationship with the hardness.
Key words0Cr18Ni10Ti stainless steel    welded joint    heat-affected zone    microhardness    indentation size effect
收稿日期: 2007-10-22     
ZTFLH:  TG407  
[1]Xu Z J,Li Y L,Liu M S,Li P Z,Wu Y G.Acta Metall Sin,2008;44:98 (许泽建,李玉龙,刘明爽,李朋洲,吴云刚.金属学报,2008;44:981
[2]Ade F.Weld J,1991;70:53
[3]Grough I G.Met Forum,1988;12:31
[4]Chen T H,Yang J R.Mater Sci Eng,2002;A338:166
[5]Zou M L,Zou Y X,Du C X,Sun D C,Chen H M.Founda- tion of Welding Theory and Technology.Beijing:Beijing University of Aeronautics & Astronautics Press,1994:168 (邹茉莲,邹一心,杜诚修,孙德超,陈焕明.焊接理论及工艺基础.北京:北京航空航天大学出版社,1994:168)
[6]Bamzai K K,Kotru P N,Wanklyn B M.Appl Surf Sci, 1998;133:195
[7]Sahin O,Uzun O,Kolemen U,Ucar N.Mater Charact, 2007;58:197
[8]Gong J H,Miao H Z,Zhao Z,Guan Z.Mater Sci Eng, 2001;A303:179
[9]Xu Z J,Li Y L.Acta Metall Sin (Engl Lett),in press
[10]Ascheron C,Haase C,Kuhn G,Neumann H.Cryst Res Technol,1989;24:K33
[11]Kick F.Das Gesetz der Proportionalen Widerstanden und Seine Anwendung,Leipzig:Felix,1885
[12]Bamzai K K,Kotru P N,Wanklyn B M.Cryst Res Tech- nol,1996;31:813
[13]Kumari P N S,Kalainathan S,Raj N A N.Mater Lett, 2008;62:305
[14]Vangatesan B,Kanniah N,Ramaswamy P.J Mater Sci Lett,1986;5:987
[15]Bhatt V P,Patel R M,Desai C F.Cryst Res Technol, 1983;18:9
[16]Dhar P R,Bamzai K,Kotru P N.Cryst Res Technol,1997; 32:535
[17]Li H,Bradt R C.J Mater Sci,1993;28:917
[18]Quinn J B,Quinn G D.J Mater Sci,1997;32:4331
[19]Sahin O,Uzun O,KSlemen U,Diizgiin B,U.car N.Chin Phys Lett,2005;22:3137
[20]Hays C,Kendall E G.Metallography,1973;6:275
[21]Bektes M,Uzun O,Aktiirk S,Ekinci A E,U.car N.Chin J Phys,2004;42:733
[22]Pal T,Kar T.Mater Sci Eng,2003;A354:331
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[14] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[15] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.