Please wait a minute...
金属学报  2007, Vol. 43 Issue (5): 529-533     
  论文 本期目录 | 过刊浏览 |
强磁场下共沉淀-相转化法制备纳米钴铁氧体颗粒
桂林;钟云波;傅小明;雷作胜;任忠鸣
上海大学
Synthesis of Cobalt Ferrite Nanoarticles in High Static Magnetic Field by Coprecipitation-Phase Transform way
GUI Lin
上海大学
引用本文:

桂林; 钟云波; 傅小明; 雷作胜; 任忠鸣 . 强磁场下共沉淀-相转化法制备纳米钴铁氧体颗粒[J]. 金属学报, 2007, 43(5): 529-533 .
, , , , . Synthesis of Cobalt Ferrite Nanoarticles in High Static Magnetic Field by Coprecipitation-Phase Transform way[J]. Acta Metall Sin, 2007, 43(5): 529-533 .

全文: PDF(393 KB)  
摘要: 在强磁场下采用共沉淀-相转化法制备出了纳米级的钴铁氧体颗粒,通过SEM,XRD和VSM等分析手段,考察了磁感应强度对纳米钴铁氧体形貌及性能的影响规律。试验结果表明:无磁场及磁感应强度小于2T时,纳米钴铁氧体颗粒为球形形貌;当磁感应强度大于等于4T时,有棒状纳米钴铁氧体形成;随着磁感应强度的增大,棒状纳米颗粒数量增加,纳米钴铁氧体的晶化程度提高,磁性能(Mr、Ms、Mr/Ms)也有大幅度的提高,10T时制备的纳米钴铁氧体颗粒的剩余磁化强度(Mr)比无磁场下制备的钴铁氧体颗粒的剩余磁化强度增加了近15倍,饱和磁化强度(Ms)提高1.44倍。从磁聚合定向生长和临界磁畴角度,分析了强磁场影响共沉淀-相转化法制备的纳米钴铁氧体的形貌、晶化程度及磁性能的机理。
关键词 钴铁氧体纳米强磁场    
Abstract:Cobalt ferrite nanoparticles were synthesized in high static magnetic field by coprecipitation-phase transform way, and the influences of magnetic flux density(MFD) on the shape and properties of cobalt ferrite nanoparticles was studied through SEM, X-ray diffraction and Vibrating Sample Magnetometer. It was shown that, when without magnetic field or MFD lower than 2Tesla, spheric cobalt ferrite nanoparticles was obtained, and when MFD was equal or above 4Tesla, claviform cobalt ferrite nanoparticles appeared. With the increase of MFD, much claviform cobalt ferrite nanoparticles was obtained, and the crystallization of cobalt ferrite nanoparticles became better, also the magnetic properties such as remanence magnetism, saturation magnetism and squareness ratio were increased remarkably. The remanence magnetism of cobalt ferrite nanoparticles prepared in 10Tesla magnetic field was 15 times to that without magnetic field, and saturation magnetism was elevated by 1.44 times. Based on the theory of magnetic aggregation and critical magnetic domain, the mechanism how the high static magnetic field affect the shape, crystallization degree and magnetic properties of cobalt ferrite nanoparticles by coprecipitation-phase transform way was discussed.
Key wordsCobalt ferrite    Nanoparticles
收稿日期: 2006-09-20     
ZTFLH:  R318.08  
[1] Zhou B, Cheng F X, Liao C S, Yan C H. Acta Chem Sin, 2001; 59: 528 (周彪,程福祥,廖春生,严纯华.化学学报,2001;59:528)
[2] Sandu I, Presmanes L, Alphonse P, Taihades P. Thin Solid Films, 2006; 495: 130
[3] de Vicente J, Delgado A V, Plaza R C, Duran JDG, Gonzalez-Caballero F. Langmuir, 2000; 16: 7954
[4] Congiu F, Concas G, Ennas G, Falqui A, Fiorani D, Marongiu G, Marras S, Spano G, Testa A M. J Magn Magn Mater, 2004; 272-276: 1561
[5] Zhang H Y, Gu B X, Zhai H R, Lu M, Huang H B. J Magn Magn Mater, 1995; 140-144: 699
[6] Shao H C, Dai H L, Huang J, Huang F L, Li S P. J Chin Ceram Soc, 2005; 33: 959 (邵海成,戴红莲,黄健,黄福龙,李世普.硅酸盐学报,2005; 33:959)
[7] Rondinone A J, Samia A C S, Zhang Z J. Appl Phys Lett, 2000; 76: 3624
[8] Li S, John V T, O'Connor C, Harris V, Carpenter E. J Appl Phys, 2000; 87: 6223
[9] Tamura H, Matijevic E. J Colloid Interface Sci, 1982; 90: 100
[10] Chinnasamy C N, Senoue M, Jeyadevan B, Perales-Perez O, Shinoda K, Tohji K. J Colloid Interface Sci, 2003; 263: 80
[11] Chae K W P, Lee J G, Kweon H S, Lee Y B. J Magn Magn Mater, 2004; 283: 103
[12] Wang X. Master's Dgree Thesis, Shanghai Normal University, 2003 (王欣.上海师范大学硕士学位论文, 2003)
[13] Chen J M. New Ways to Synthesize Ferrite Particles by Wet Method. Beijing: National Defence Industry Press, 2001: 12 (陈俊明.湿法制备铁氧体磁粉的新途径.北京:国防工业出版社,2001:12)
[14] Chen S Z, Jiang Z Y. General Physics. Beijing: Higher Education Press, 2000: 307 (陈守洙,江之永.普通物理学.北京:高等教育出版社,2000: 307)
[15] Berkowitz A E, Schuele W J. J Appl Phys, 1959; 30: 134
[16] Tian S. Material Physical Properties. Beijing: Beihang University Press, 2001: 249 (田莳.材料物理性能.北京:北京航空航天大学出版社, 2001:249)
[17] Jiang S T, Li W. Magnetic Agglomerate Physics. Beijing: Science Press, 2003: 48 (姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003: 48)
[1] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[2] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[3] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[4] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[7] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[8] 刘志愿, 王永贵, 赵成玉, 杨婷, 夏爱林. p型方钴矿热电材料纳米-介观尺度微结构调控[J]. 金属学报, 2022, 58(8): 979-991.
[9] 郭雨静, 鲍皓明, 符浩, 张洪文, 李文宏, 蔡伟平. 金属Rb纳米溶胶的超声乳化制备及点火特性[J]. 金属学报, 2022, 58(6): 792-798.
[10] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[11] 杭弢, 薛琦, 李明. 无模板电沉积金属微纳米阵列材料研究进展[J]. 金属学报, 2022, 58(4): 486-502.
[12] 朱彬, 杨兰, 刘勇, 张宜生. 基于纳米压痕逆算法的热冲压马氏体/贝氏体双相组织的微观力学性能[J]. 金属学报, 2022, 58(2): 155-164.
[13] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[14] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[15] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.