Please wait a minute...
金属学报  2007, Vol. 43 Issue (6): 583-588     
  论文 本期目录 | 过刊浏览 |
下贝氏体中碳化物的析出
方鸿生 冯春 郑燕康 郑秀华 张弛 白秉哲
清华大学材料科学与工程系先进材料教育部重点实验室; 北京 100084
The lower bainitic carbides are precipitated from austenite
;FENG Chun;;;;;
清华大学材料系
引用本文:

方鸿生; 冯春; 郑燕康; 郑秀华; 张弛; 白秉哲 . 下贝氏体中碳化物的析出[J]. 金属学报, 2007, 43(6): 583-588 .
, , , , , . The lower bainitic carbides are precipitated from austenite[J]. Acta Metall Sin, 2007, 43(6): 583-588 .

全文: PDF(414 KB)  
摘要: 贝氏体碳化物是贝氏体组织的重要组成部分,本文目的是阐明下贝氏体碳化物的来源。为此,本文做了三件事:1. 做了三组实验,结果表明:下贝氏体碳化物是在贝氏体a/g界面的奥氏体一侧析出, 向奥氏体中生长,也在亚单元之间析出。在形态上,碳化物可跨越a/g或a/a界面;2.再做了另一组实验,说明在表观现象上是下贝氏体碳化物主要存在于铁素体内部,而实质上是析出自于a/g界面的奥氏体一侧。在整个相变过程中铁素体与碳化物的长大呈相互竞争机制,铁素体的长大速度远高于碳化物,二者长大的结果是铁素体将碳化物包围,导致碳化物似乎是由铁素体中析出的假象;3.对实验结果用热力学及台阶理论做了分析,在实验证据及理论分析的基础上提出了下贝氏体碳化物的析出及长大模型。 以上工作,明确了下贝氏体碳化物是由富碳残余奥氏体中析出而不是由碳过饱和的铁素体中析出。其实质是确定新形成的贝氏体铁素体中是否过饱和碳,这直接涉及贝氏体相变机制的类型。
关键词 下贝氏体碳化物析出贝氏体相变机制    
Abstract:The carbides of lower bainite is main constituent of bainite structure. The purpose of this paper is to clarify that where the lower bainitic carbides come from. Therefore ,three things have been completed in this paper:1. By using three group of experiment,the results indicate that the lower bainitic carbides can nucleate in the g side of a/g interface or between two bainitic ferrite sub-units and grow towards austenite. The carbides can exist across the interface of a/g or a/a.2. The results of another experiment indicate that the essence of phenomenon that lower bainitic carbides exist inside the ferrite is lower bainitic carbides precipitate from the g side at a/g interface. The carbides grow competitively with the ferrite,during the whole transformation process. Meanwhile the growing rate of ferrite is higher than that of carbides. As a result, the carbides are surrounded by ferrite which may give us a false concept that the lower bainitic carbides are precipitated from bainitic ferrite.3. The nucleation and growth model of lower bainitic carbides is proprosed on the basic of thermodynamics and the ledge-wise growth theory. From what has been mentioned above,it is suggested that lower bainitic carbides precipitate from carbon-enriched retained austenite rather than supersaturated ferrite. The essential of this paper is to identify whether existing the carbon-supersaturated bainitic ferrite , which directly concerning the mechanism of bainitic transformation.
Key wordslower bainite    carbides    precipitation    transformation mechanism of Bainite
收稿日期: 2007-01-16     
ZTFLH:  TG111.5  
[1]Hehemann R F,Kinsman K R,Aaronson H I.Metall Trans,1972;3:1077
[2]Hsu T Y,Gu W,Yu X.Proc Int Conf Solid-Solid Phase Transform,New York:Metallurgical Society of AIME, 1982:1029
[3]Aaronson H I.Metall Trans,1990;21A:1343
[4]Fang H S,Yang Z G,Yang J B,Bai B Z.Acta Metall Sin, 2005;41:449 (方鸿生,杨志刚,杨金波,白秉哲.金属学报,2005;41:449)
[5]Azuma M,Fujita N,Takahashi M.ISIJ Int,2005;45:221
[6]Bhadeshia,H K D H,Edmonds D V.Acta Metall,1980; 28:1265
[7]Bhadeshia H K D H.Acta Metall,1980;28:1103
[8]Bhadeshia H K D H.Bainite in Steels.London:The ??Cambridge University Press,2001:68,70
[9]Kang M K,Sun J L,Yang Q M.Metall Trans,1990;21A: 853
[10]Peet M,Babu S S,Miller M K,Bhadeshia H KD H.Scr Mater,2004;50:1277
[11]Kang M K,Zhang M X,Zhu M.Acta Mater,2006;54: 2121
[12]Honeycombe R W K.In:Marder A R,Goldstein J I eds, Proc Int Conf Phase Transformation in Ferrous Alloys. Warrendale,PA:TSM-AIME,1983:259
[13]Fang H S,Wang J J,Zheng Y K,Yang Z G.Acta Metall Sin,1993;29:445 (方鸿生,王家军,郑燕康,杨志刚.金属学报,1993;29:445)
[14]Aaronson H I.Metall Trans,1993;24A:241
[15]Aaronson H I.Journal of Microscopy,1974;102:275
[16]Fang H S,Wang J J,Yang Z G,Li C M,Bo X Z,Zheng Y K.Bainite Transformation.Beijing:Science Press,1999: 64,225,512 (方鸿生,王家军,杨志刚,李春明,薄祥正,郑燕康.贝氏体相变.北京:科学出版社,1999:64,225,512)
[17]Fang H S,Bo X Z,Wang J J.Mater Trans JIM,1998;39: 1264
[18]Fang H S,Wang J J,Zheng Y K.Metall Trans,1994;25A: 1
[19]Jin Q,Fang H S.Metall Trans,1990;21A:2637
[20]Xu Z Y.Theory of Phase Transformation.Beijing:Sci- ence Press,1988:366 (徐祖耀.相变原理.北京:科学出版社,1988:366)
[21]Fang H S,Wang J J,Yang Z G,Li C M,Zheng Y K. Metall Trans,1996;27A:1535
[1] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[2] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[5] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[6] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[9] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] 刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[14] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[15] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.