Please wait a minute...
金属学报  2007, Vol. 43 Issue (6): 589-594     
  论文 本期目录 | 过刊浏览 |
固/气共晶定向凝固中的工艺判据
张华伟 李言祥 刘源
清华大学机械工程系; 先进成形制造教育部重点实验室; 北京 100084
The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics
Hua-Wei ZHANG;;
引用本文:

张华伟; 李言祥; 刘源 . 固/气共晶定向凝固中的工艺判据[J]. 金属学报, 2007, 43(6): 589-594 .
, , . The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. Acta Metall Sin, 2007, 43(6): 589-594 .

全文: PDF(239 KB)  
摘要: 气体压力和熔体过热度通过决定熔体中气体溶解量而直接影响多孔试样的气孔率。本文通过理论分析建立了固/气共晶定向凝固中气体逸出和藕状多孔结构形成所需的过热度和气体压力判据。以金属/氢气共晶为例,计算结果表明,过热度和氩气分压均应有一适中的范围:给定氢气和氩气分压时,过热度应高于藕孔形成临界过热度而低于氢气逸出临界过热度;给定过热度和氢气分压时,氩气分压应高于氢气逸出临界氩气分压而低于藕孔形成临界氩气分压。该分析结果从藕状多孔Mg的实验结果得到了验证,可以作为高质量规则多孔材料实际制备过程的工艺参数指导原则。
关键词 多孔金属固/气共晶定向凝固气体逸出    
Abstract:Among all the processing parameters which affect porous structure obtained by directional solidification of a solid/gas (e.g. metal/hydrogen) eutectic (Gasar), the gas pressure above melts and the superheating temperature of melts are the most observable and easily governed because they directly control the amount of hydrogen saturated in melts. The critical processing conditions for hydrogen to escape and for formation of lotus-type porous structure have been deduced through theoretical analysis and calculation, and the following conclusions have been obtained: both the superheating temperature and the argon partial pressure should have moderate values, viz. with given partial pressures of hydrogen and argon, the superheating temperature should be bigger than the threshold of formation of lotus-type structure and smaller than that of hydrogen to escape; however, with given superheat degree and hydrogen partial pressure, the argon partial pressure should be bigger than the threshold of hydrogen to escape and smaller than that of formation of lotus-type porous structure. These conclusions were verified by the experimental results of lotus-type porous Mg and will contribute to the fabrication of high-quality regular porous metals by Gasar process.
Key wordsporous metal    solid/gas eutectic    unidirectional solidification    gas escaping    lotus-type structure    Gasa
收稿日期: 2006-09-01     
ZTFLH:  TG146  
[1]Shapovalov V I.U S Pat,5,181,549,1993
[2]Liu Y,Li Y X,Wan J,Zhang H W.Mater Sci Eng,2005; A402:47
[3]Zhang H W,Li Y X,Liu Y.Acta Metall Sin,2006;42: 1165 (张华伟,李言样,刘源.金属学报,2006;42:1165)
[4]Liu Y,Li Y X,Zhang H W,Wan J.Acta Metall Sin,2005; 41:886 (刘源,李言祥,张华伟,万疆.金属学报,2005;41:886)
[5]Liu Y,Li Y X,Zhang H W,Wan J.J Mater Sci Technol, 2006;22:306
[6]Li Y X,Liu Y,Zhang H W,Wang X.In:Nakajima H, Kanetake N eds.,Proc MetFoam 2005,Sendai:The Japan Institute of Metals,2006:237
[7]Zhu M Y,Xiao Z Q.Mathematical and Physical Simu- lation of Steel Refining Process.Beijing:Metallurgical Industry Press,1998:1 (朱苗勇,萧泽强.钢的精炼过程数学物理模拟.北京:冶金工业出版社,1998:1)
[8]Han Q Y.Kinetics on Metallurgical Process.Beijing: Metallurgical Industry Press,1983:167 (韩其勇.冶金过程动力学.北京:冶金工业出版社,1983:167)
[9]Smithells C J.Smithells Metals Reference Book.7th ed., Boston:Butterworth-Heinemann,1992:14-7
[10]Miedema A R,Boom R.Z Metallkd,1978;69:183
[11]Shapovalov V I,Semik A P,Timchenko A G.Metallurgy, 1993;3:25
[12]Yamamura S,Shiota H,Murakami K.Mater Sci Eng, 2001;A318:137
[13]An G Y.Formation Theory of Castings.Beijing:China Machine Press,1989:173 (安阁英.铸件形成理论.北京:机械工业出版社,1989:173)
[14]Apprill J M,Poirier D R,Maguire M C,Gutsch T C. Mater Res Soc Symp Proc,1998;521:291
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[5] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[9] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[10] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[13] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[14] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.
[15] 金浩, 贾清, 刘荣华, 线全刚, 崔玉友, 徐东生, 杨锐. 籽晶制备及Ti-47Al合金PST晶体取向控制[J]. 金属学报, 2019, 55(12): 1519-1526.