Please wait a minute...
金属学报  2005, Vol. 41 Issue (7): 713-720     
  论文 本期目录 | 过刊浏览 |
全片层BT18Y钛合金在相区固溶时的显微组织演化
杨 义 徐 锋 黄爱军 李阁平
中国科学院金属研究所; 沈阳110016
Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field
YANG Yi; XU Feng; HUANG Aijun; LI Geping
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang110016
引用本文:

杨义; 徐锋; 黄爱军; 李阁平 . 全片层BT18Y钛合金在相区固溶时的显微组织演化[J]. 金属学报, 2005, 41(7): 713-720 .
, , , . Evolution of Microstructure of Full Lamellar Titanium Alloy BT18Y Solutionized At Phase Field[J]. Acta Metall Sin, 2005, 41(7): 713-720 .

全文: PDF(719 KB)  
摘要: 对BT18Y(Ti--6.9Al--3.6Zr--2.7Sn--0.7Mo--0.6Nb--0.21Si)钛合金进行了一系列的固溶处理, 利用OM, SEM和TEM观察了在+两相区固溶后的显微组织形貌, 发现连续的晶界相发生了球化, 一部分晶内初生片端部具有“叉形”结构。分析了球化的原因和“叉形”结构的形成机理:晶界相表面曲率不同造成的溶质浓度差异而引起的扩散是晶界相球化的根本原因, 不同晶界片的交接对球化有一定的贡献;晶内初生片的各个部位与相之间的相界面结构和界面能的不同是造成+相区固溶时片端“叉形”形貌的主要原因, 片端面与相之间为高界面能易移动的非共格界面, 在固溶时相容易在该处向片内生长形成片, 与之对应的片便出现了“叉形”结构。
关键词 BT18Y钛合金晶界球化    
Abstract:BT18Y titanium alloy was treated with several groups of heat treatment. After solutionized frectment at phase field, metalloscopy, transmission electron Microscope (TEM) and scanning electron microscopy (SEM) were employed to observe the microstructures. It was found that the continuous grain boundary (GB) phase is spheroidizes and the edges of some intragranular primarylaths show “forked” morphology. The ultimate reason of the spheroidization of GB is the diffusion of solute atoms due to the difference of solute concentration, which results from the different interfacial curvatures at different sites. The joint of two GB lamellas also gives some contribution to the spheroidization of GB . The “forked” morphology at the edge of primary lath results from different interfacial structures and energies between phase and different parts oflath. The incoherent interface between phase and the edge of lath has high interfacial energy and moves easily. When the alloy is solutionized at phase field, phase trends to grow into lath and forms lath, which results the “forked” morphology of primary lath.
Key wordsBT18Y titanium alloy    spheroidization    “forked” morphology
收稿日期: 2004-10-11     
[1]Lee D H,Nam S W.Scr Mater,1999;40:265
[2]Bolisowa E A.Translated by Chen S Q.Metallography of Titanium Alloys.Beijing:Defense Industrial Press,1980: 246,214,227,199 (鲍利索娃E.A.编著,陈石卿译.钛合金金相学.北京:国防 工业出版社,1986:246,214,227,199)
[3] Wang Q Y,Ge Z M,Zhou Y B.Aerial Titanium Alloy. Shanghai:Shanghai Science and Technology Press,1985: 209,211,302 (王全友,葛志明,周彦邦.航空用钛合金.上海:上海科学技 术出版社, 1985:210,190,302)
[4]Filip R,Kubiak K,Ziaja W,Sieniawski J.Mater Proc Technol,2003;133:84
[5]Peng C Q,Huang B Y,He Y H.Chin Nonferrous Met, 2001;11:527 (彭超群,黄伯云,贺跃辉.中国有色金属学报,2001;11:527)
[6] Tiley J,Searles T,Lee E,Kar S,Banerjee R,Russ J C, Fraser H L.Mater Sci Eng,2004;A372:191
[7] Lee D H, Nam S W, Choe S J. Mater Sci Eng, 2000; A291: 60
[8] Semiatin S L, Seetharaman V, Ghosh A K, Shell E B, Simon M P, Fagin P N. Mater Sci Eng, 1998; A256: 92
[9] Seshacharyulu T, Medeiros S C, Morgan J T, Malas J C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2000; A279: 289
[10] Seshacharyulu T, Medeiros S C, Frazier W G, Prasad Y V R K. Mater Sci Eng, 2002; A325: 112
[11] Sauer C, Lutjering G.Mater Sci Eng, 2001; A319-321: 393
[12] Lutjering G. Mater Sci. Eng, 1999; A263: 117
[13] Zhang X D, Bonniwell P, Fraser H L, Baeslack W A, Evans D J, Ginter T, Bayha T, Cornell B. Mater Sci Eng, 2003; A343: 210
[14] Koike J, Maruyama K. Mater Sci Eng, 1999; A263: 155
[15] Furuhara T, Ogawa T, Maki T. Philos Mag Lett, 1995; 72 (3): 175
[16] Bhattacharyya D, Viswanathan G B, Robb D, Furrer D, Hamish L F. Acta Mater, 2003; 51: 4679
[17] Huang A J, Xu F, Li G P, Li D. Acta Metall Sin, 2002; 38(Suppl.): S217 (黄爱军,徐锋,李阁平,李 东.金属学报, 2002;3s(增 刊):S217)
[18] Furuhara T, Takagi S, Watanabe H, Maki T. Metall Trans, 1996; 27A: 1635
[19] Miyano N, Fujiwara H, Ameyama K, Weatherly G C. Mater Sci Eng, 2002; A333: 85
[20] Cui Z Q. Metallography and Heat Treatment. Beijing: China Machine Press, 1995: 257 (崔忠圻.金属学与热处理.北京:机械工业出版社,1995:257)
[21] Xia L F. Metallic Heat Treatment Technology. Herbin: Harbin University of Technology Press, 1998: 28 (夏立芳.金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社, 1998:28)
[22] Xu Z Y. The Theory of Phase Transition. Beijing: Science Press, 2000: 22 (徐祖耀.相变原理.北京:科学出版社, 2000:22)
[23] Huang A J, Li G P, Hao Y L,Yang R. Ada Mater, 2003; 51: 4939
[24] Viswanathan G B, Karthikeyan S, Hayes R W, Mills M J. Acta Mater, 2002; 50: 4965
[25] Savage M F, Tatalovich J, Zupan M, Hemker K J, Mills M J. Mater Sci Eng, 2001; A319-321: 398
[26] Seward G G E, Celotto S, Prior D J, Wheeler J, Pond R G. Acta Mater, 2004; 52: 821H
[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[5] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[6] 卢毓华, 王海舟, 李冬玲, 付锐, 李福林, 石慧. 基于高通量场发射扫描电镜建立的高温合金 γ' 相定量统计表征方法[J]. 金属学报, 2023, 59(7): 841-854.
[7] 李谦, 刘凯, 赵天亮. 弹性拉应力下Q235碳钢在5%NaCl盐雾中的成锈行为及其机理[J]. 金属学报, 2023, 59(6): 829-840.
[8] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[9] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[10] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[11] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[12] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[13] 王鲁宁, 尹玉霞, 石章智, 韩倩倩. 医用可降解锌合金的生物相容性评价研究进展[J]. 金属学报, 2023, 59(3): 319-334.
[14] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[15] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.