Please wait a minute...
金属学报  2024, Vol. 60 Issue (2): 247-260    DOI: 10.11900/0412.1961.2022.00046
  研究论文 本期目录 | 过刊浏览 |
钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为
王勇1,2, 张卫文1,2, 杨超1,2, 王智1,2()
1 华南理工大学 机械与汽车工程学院 广东省金属新材料制备与成形重点实验室 广州 510640
2 华南理工大学 机械与汽车工程学院 国家金属材料近净成形工程技术研究中心 广州 510640
Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure
WANG Yong1,2, ZHANG Weiwen1,2, YANG Chao1,2, WANG Zhi1,2()
1 Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
2 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
Yong WANG, Weiwen ZHANG, Chao YANG, Zhi WANG. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. Acta Metall Sin, 2024, 60(2): 247-260.

全文: PDF(5531 KB)   HTML
摘要: 

韧性差是限制高强度纳米结构铝合金应用的关键问题,本工作旨在结合增材制造点阵结构获得高强韧性。利用增材制造和热挤压制备出TC4三维点阵结构增韧Al84Ni7Gd6Co3纳米结构铝合金的新型复合材料,并对其微观组织、拉伸力学性能和拉伸断裂行为进行了表征和分析。结果表明,复合材料中TC4点阵结构保持完整,界面保持平直清晰,TC4合金中的α相和β相沿着挤压方向拉长形成精细的片条状结构,纳米结构铝合金区域为高体积分数纳米结构化合物相和纳米晶Al。力学性能测试结果表明,TC4三维点阵结构对纳米结构铝合金区域的裂纹萌生和扩展产生了明显的限制效应,使得复合材料获得了良好的拉伸力学性能。

关键词 铝合金钛合金点阵结构复合材料强韧性    
Abstract

Lightweight structural materials with excellent strength and good ductility are extensively used in engineering applications. Although nanostructured Al alloys have relatively low density and high strength resulting in high specific strength, their application is severely limited due to their poor ductility. Recently, additive manufacturing (AM) techniques have been rapidly developed and complex lattice structures can be manufactured by AM. Here, a new composite containing titanium alloy lattice structure and nanostructured Al alloy was created. Selected laser melting is used to generate the TC4 three-dimensional lattice structure, which is subsequently hot extruded with the high-strength nanostructure Al84Ni7Gd6Co3 aluminum alloy. Tensile mechanical characteristics and fracture behavior were studied. The research results reveal that the TC4 lattice structure in the composite remains intact and the interface remains flat and clear, and the α and β phases are elongated along the extrusion direction to form a fine lamellar structure. There is a significant volume proportion of nanostructured intermetallic phases and nanocrystalline fcc-Al in the nanostructured aluminum alloy areas. The mechanical property test results reveal that the TC4 three-dimensional lattice structure has a clear limiting influence on fracture initiation and propagation in the nanostructured aluminum alloy region, resulting in good comprehensive tensile mechanical properties of the composite.

Key wordsaluminum alloy    titanium alloy    lattice structure    composite    strengthening and toughing
收稿日期: 2022-02-14     
ZTFLH:  TG146  
基金资助:国家重点研发计划项目(2020YFB2008300);国家重点研发计划项目(2020YFB2008301);国家重点研发计划项目(2020YFB2008305);广东省自然科学基金项目(2023A-1515011569);高端外国专家引进计划项目(G2021163004L);广东省国际科技合作领域基金项目(2021A05-05050002)
通讯作者: 王 智,wangzhi@scut.edu.cn,主要从事铝合金和钛合金的强韧化研究
Corresponding author: WANG Zhi, professor, Tel: (020)87113851, E-mail: wangzhi@scut.edu.cn
作者简介: 王 勇,男,1995年生,硕士
图1  TC4合金粉末和Al84Ni7Gd6Co3非晶合金粉末的SEM像以及TC4点阵结构的示意图、宏观形貌和微观组织(a) SEM image of the TC4 powders (b) SEM image of the Al84Ni7Gd6Co3 amorphous powders(c) schematic of the TC4 lattice (unit: mm) (d) TC4 lattices fabricated by selected laser melting process(e, f) top views of the TC4 lattice after 4 h at 800oC followed by furnace cooling with low (e) and high (f) magnifications
图2  热挤压制备Al84Ni7Gd6Co3/TC4复合材料的示意图(a) cold press (b) hot extrusion(c) hot extruded sample (d) dimension of the tensile sample (unit: mm)
图3  Al84Ni7Gd6Co3/TC4复合材料的XRD谱
图4  Al84Ni7Gd6Co3/TC4复合材料的μ-CT三维重构显微组织图以及孔隙表征(a) 3D morphology (b) 2D projection on y-z plane of the sample(c) pore distributions (d) pore size distributions in the specimen along the extrusion direction
图5  Al84Ni7Gd6Co3/TC4复合材料横截面和纵截面的微观组织(a, b) OM images of the transversal section (a) and longitudinal section (b)(c) BSE-SEM image of the Al84Ni7Gd6Co3 alloy area of transversal section(d, e) SE-SEM images of the TC4 lattice showing the microstructures of the transversal section (d) and longitudinal section (e)
图6  Al84Ni7Gd6Co3/TC4复合材料的界面特征(a, b) low (a) and high (b) magnified SEM images (Inset in Fig.6b shows the EDS results of point 1)(c) EDS line scanning result along line in Fig.6b
图7  Al84Ni7Gd6Co3/TC4复合材料纵截面界面区域的EBSD分析结果(a) SEM image (b) phase distribution map (c) EBSD orientation map(d) EBSD kernel average misorientation (KAM) color map with respect to the geometrically necessary dislocation (GND) density (ρGND)(e) {011¯0} pole figure for α-Ti phase (f) inverse pole figure (IPF) map
图8  Al84Ni7Gd6Co3/TC4复合材料和纯Al84Ni7Gd6Co3纳米结构铝合金的拉伸性能,及本工作和目前报道[24,39~61]的Al/Ti异质异构复合材料的密度与力学性能对比
图9  Al84Ni7Gd6Co3/TC4复合材料的断裂特征(a) μ-CT 3D morphology of the fracture surface(b) morphology and spatial distribution of the micro cracks and volume of cracks along the tensile direction(c, d) low (c) and high (d) magnified SEM images of fractured samples after polishing along longitudinal section
图10  Al84Ni7Gd6Co3/TC4复合材料断口形貌的SEM像
图11  拉伸断裂后纵截面界面区域的EBSD分析(a) SEM image (b) phase distribution map(c) EBSD orientation map (d) EBSD KAM color map with respect to ρGND(e) {011¯0} pole figure for α-Ti phase (f) IPF map
图12  Al84Ni7Gd6Co3/TC4复合材料在拉伸过程中裂纹萌生与扩展示意图(a) early elastic deformation stage (b) initial cracking at the Al84Ni7Gd6Co3 alloy(c) appearance of delamination (d) finally fractured
1 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
2 Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng., 2019, A755: 28
3 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
3 张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
4 Tao N R, Lu K. Preparation techniques for nanostructured metallic materials via plastic deformation [J]. Acta Metall. Sin., 2014, 50: 141
4 陶乃镕, 卢 柯. 纳米结构金属材料的塑性变形制备技术 [J]. 金属学报, 2014, 50: 141
doi: 10.3724/SP.J.1037.2013.00803
5 Lu K. Phase transformation from an amorphous alloy into nanocrystalline materials [J]. Acta Metall. Sin., 1994, 30: B1
5 卢 柯. 非晶态合金向纳米晶体的相转变 [J]. 金属学报, 1994, 30: B1
6 Zhang X, Misra A, Wang H, et al. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films [J]. J. Appl. Phys., 2005, 97: 094302
7 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
8 Inoue A, Kong F L, Zhu S L, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Mater. Res., 2015, 18: 1414
doi: 10.1590/1516-1439.058815
9 Lu K. Synjournal of nanocrystalline materials from amorphous solids [J]. Adv. Mater., 1999, 11: 1127
doi: 10.1002/(ISSN)1521-4095
10 Eckert J, Calin M, Yu P, et al. Al based alloys containing amorphous and nanostructured phases [J]. Rev. Adv. Mater. Sci., 2008, 18: 169
11 Zhuo L C, Yin E H, Wang H, et al. Hierarchical ultrafine-grained/nanocystalline Al-based bulk alloy with high strength and large plasticity [J]. Intermetallics, 2012, 23: 199
doi: 10.1016/j.intermet.2011.12.004
12 Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
doi: 10.1016/S1359-6462(01)00781-3
13 Wang Z, Qu R T, Scudino S, et al. Hybrid nanostructured aluminum alloy with super-high strength [J]. NPG Asia Mater., 2015, 7: e229
doi: 10.1038/am.2015.129
14 Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
14 温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
15 Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4 pmid: 31704930
16 Hofmann D C, Kolodziejska J, Roberts S, et al. Compositionally graded metals: A new frontier of additive manufacturing [J]. J. Mater. Res., 2014, 29: 1899
doi: 10.1557/jmr.2014.208
17 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
18 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: eaba5581
doi: 10.1126/sciadv.aba5581
19 Li Z, Zhang M, Li N, et al. Metal frame reinforced bulk metallic glass composites [J]. Mater. Res. Lett., 2020, 8: 60
doi: 10.1080/21663831.2019.1695684
20 Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
20 谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
21 San Marchi C, Kouzeli M, Rao R, et al. Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scr. Mater., 2003, 49: 861
doi: 10.1016/S1359-6462(03)00441-X
22 Shao C W, Zhao S, Wang X G, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique [J]. NPG Asia Mater., 2019, 11: 69
doi: 10.1038/s41427-019-0174-2
23 Ojima M, Inoue J, Nambu S, et al. Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction [J]. Scr. Mater., 2012, 66: 139
doi: 10.1016/j.scriptamat.2011.10.018
24 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
25 Lhuissier P, Inoue J, Koseki T. Strain field in a brittle/ductile multilayered steel composite [J]. Scr. Mater., 2011, 64: 970
doi: 10.1016/j.scriptamat.2011.01.048
26 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
27 He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
pmid: 12652670
28 Han B O, Lavernia E J, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall. Mater. Trans., 2005, 36A: 957
29 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
30 Pawlowski A E, Cordero Z C, French M R, et al. Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms [J]. Mater. Des., 2017, 127: 346
doi: 10.1016/j.matdes.2017.04.072
31 Rahmani R, Antonov M, Brojan M. Lightweight 3D printed Ti6Al4V-AlSi10Mg hybrid composite for impact resistance and armor piercing shielding [J]. J. Mater. Res. Technol., 2020, 9: 13842
doi: 10.1016/j.jmrt.2020.09.108
32 Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance [J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105192
doi: 10.1016/j.ijrmhm.2020.105192
33 Han J C, Liu C, Jia Y, et al. Research progress on titanium/aluminum composite plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1270
33 韩建超, 刘 畅, 贾 燚 等. 钛/铝复合板研究进展 [J]. 中国有色金属学报, 2020, 30: 1270
34 Wang Z, Prashanth K G, Scudino S, et al. Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders [J]. Intermetallics, 2014, 46: 97
doi: 10.1016/j.intermet.2013.11.005
35 Zherebtsov S, Mazur A, Salishchev G, et al. Effect of hydrostatic extrusion at 600-700oC on the structure and properties of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2008, A485: 39
36 Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
36 刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
37 Yao W, Wu A P, Zou G S, et al. Formation process of the bonding joint in Ti/Al diffusion bonding [J]. Mater. Sci. Eng., 2008, A480: 456
38 Jiang B, Ren X P, Hou H L, et al. Analysis of peeling strength and bonding mechanism of Ti/Al foil interface using ultrasonic consolidation process [J]. Rare Met. Mater. Eng., 2019, 48: 3372
38 姜 波, 任学平, 侯红亮 等. 超声固结钛/铝箔材界面剥离强度与结合机理分析 [J]. 稀有金属材料与工程, 2019, 48: 3372
39 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
40 Chen W H, He W J, Chen Z J, et al. Effect of wavy profile on the fabrication and mechanical properties of Al/Ti/Al composites prepared by rolling bonding: Experiments and finite element simulations [J]. Adv. Eng. Mater., 2019, 21: 1900637
doi: 10.1002/adem.v21.11
41 Yu H L, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding [J]. J. Mater. Res., 2017, 32: 3761
doi: 10.1557/jmr.2017.355
42 Chen W H, He W J, Chen Z J, et al. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity [J]. Int. J. Plast., 2020, 133: 102806
doi: 10.1016/j.ijplas.2020.102806
43 Liu J, Wu Y Z, Wang L, et al. Fabrication and characterization of high-bonding-strength Al/Ti/Al-laminated composites via cryorolling [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 871
doi: 10.1007/s40195-020-01041-z
44 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
45 Jafari R, Eghbali B, Adhami M. Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites [J]. Mater. Chem. Phys., 2018, 213: 313
doi: 10.1016/j.matchemphys.2018.04.001
46 Du Y, Fan G H, Yu T B, et al. Laminated Ti-Al composites: Processing, structure and strength [J]. Mater. Sci. Eng., 2016, A673: 572
47 Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
48 Pei Y B, Huang T, Chen F X, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding [J]. Vacuum, 2020, 181: 109596
doi: 10.1016/j.vacuum.2020.109596
49 Ma M, Meng X, Liu W C. Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling [J]. J. Mater. Eng. Perform., 2017, 26: 3569
doi: 10.1007/s11665-017-2769-5
50 Liu Y, Liu C, Liu W S, et al. Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition [J]. Mater. Sci. Technol., 2018, 34: 945
doi: 10.1080/02670836.2017.1412042
51 Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
52 Kim D W, Lee D H, Kim J S, et al. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties [J]. Sci. Rep., 2017, 7: 8110
doi: 10.1038/s41598-017-08681-9 pmid: 28808267
53 Qin L, Fan M Y, Guo X Z, et al. Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing [J]. Vacuum, 2018, 155: 96
doi: 10.1016/j.vacuum.2018.05.021
54 Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461 pmid: 27917923
55 Lyu S, Sun Y B, Ren L, et al. Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites [J]. Intermetallics, 2017, 90: 16
doi: 10.1016/j.intermet.2017.06.007
56 Marr T, Freudenberger J, Seifert D, et al. Ti-Al composite wires with high specific strength [J]. Metals, 2011, 1: 79
doi: 10.3390/met1010079
57 Guo B S, Song M, Zhang X M, et al. Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle [J]. Mater. Charact., 2020, 170: 110666
doi: 10.1016/j.matchar.2020.110666
58 Liu Z W, Cheng N, Zheng Q L, et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates [J]. Mater. Sci. Eng., 2018, A710: 392
59 Ma Y, Mei Q S, Li C L, et al. Microstructure and mechanical behavior of Al-TiAl3 composites containing high content uniform dispersion of TiAl3 particles [J]. Mater. Sci. Eng., 2020, A786: 139435
60 Zeng Y, Himmler D, Randelzhofer P, et al. Microstructures and mechanical properties of Al3Ti/Al composites produced in situ by high shearing technology [J]. Adv. Eng. Mater., 2019, 21: 1800259
doi: 10.1002/adem.v21.4
61 Tamizi Junqani M, Madaah Hosseini H R, Azarniya A. Comprehensive structural and mechanical characterization of in-situ Al-Al3Ti nanocomposite modified by heat treatment [J]. Mater. Sci. Eng., 2020, A785: 139351
62 Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
63 Yang X, Li Y Z, Duan M G, et al. An investigation of ductile fracture behavior of Ti6Al4V alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2022, 890: 161926
doi: 10.1016/j.jallcom.2021.161926
64 Wang X Q, Gong X B, Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing [J]. Procedia Manuf., 2015, 1: 287
65 Holovenko Y, Kollo L, Saarna M, et al. Effect of lattice surface treatment on performance of hardmetal-titanium interpenetrating phase composites [J]. Int. J. Refract. Met. Hard Mater., 2020, 86, 105087
doi: 10.1016/j.ijrmhm.2019.105087
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[4] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[5] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[6] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.
[7] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[10] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[11] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[12] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[15] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.