|
|
钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为 |
王勇1,2, 张卫文1,2, 杨超1,2, 王智1,2( ) |
1 华南理工大学 机械与汽车工程学院 广东省金属新材料制备与成形重点实验室 广州 510640 2 华南理工大学 机械与汽车工程学院 国家金属材料近净成形工程技术研究中心 广州 510640 |
|
Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure |
WANG Yong1,2, ZHANG Weiwen1,2, YANG Chao1,2, WANG Zhi1,2( ) |
1 Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 2 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
引用本文:
王勇, 张卫文, 杨超, 王智. 钛合金三维点阵结构增韧纳米铝合金的力学性能和变形行为[J]. 金属学报, 2024, 60(2): 247-260.
Yong WANG,
Weiwen ZHANG,
Chao YANG,
Zhi WANG.
Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. Acta Metall Sin, 2024, 60(2): 247-260.
1 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086
pmid: 30819960
|
2 |
Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng., 2019, A755: 28
|
3 |
Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
|
3 |
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
|
4 |
Tao N R, Lu K. Preparation techniques for nanostructured metallic materials via plastic deformation [J]. Acta Metall. Sin., 2014, 50: 141
|
4 |
陶乃镕, 卢 柯. 纳米结构金属材料的塑性变形制备技术 [J]. 金属学报, 2014, 50: 141
doi: 10.3724/SP.J.1037.2013.00803
|
5 |
Lu K. Phase transformation from an amorphous alloy into nanocrystalline materials [J]. Acta Metall. Sin., 1994, 30: B1
|
5 |
卢 柯. 非晶态合金向纳米晶体的相转变 [J]. 金属学报, 1994, 30: B1
|
6 |
Zhang X, Misra A, Wang H, et al. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films [J]. J. Appl. Phys., 2005, 97: 094302
|
7 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
8 |
Inoue A, Kong F L, Zhu S L, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Mater. Res., 2015, 18: 1414
doi: 10.1590/1516-1439.058815
|
9 |
Lu K. Synjournal of nanocrystalline materials from amorphous solids [J]. Adv. Mater., 1999, 11: 1127
doi: 10.1002/(ISSN)1521-4095
|
10 |
Eckert J, Calin M, Yu P, et al. Al based alloys containing amorphous and nanostructured phases [J]. Rev. Adv. Mater. Sci., 2008, 18: 169
|
11 |
Zhuo L C, Yin E H, Wang H, et al. Hierarchical ultrafine-grained/nanocystalline Al-based bulk alloy with high strength and large plasticity [J]. Intermetallics, 2012, 23: 199
doi: 10.1016/j.intermet.2011.12.004
|
12 |
Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
doi: 10.1016/S1359-6462(01)00781-3
|
13 |
Wang Z, Qu R T, Scudino S, et al. Hybrid nanostructured aluminum alloy with super-high strength [J]. NPG Asia Mater., 2015, 7: e229
doi: 10.1038/am.2015.129
|
14 |
Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
|
14 |
温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
|
15 |
Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4
pmid: 31704930
|
16 |
Hofmann D C, Kolodziejska J, Roberts S, et al. Compositionally graded metals: A new frontier of additive manufacturing [J]. J. Mater. Res., 2014, 29: 1899
doi: 10.1557/jmr.2014.208
|
17 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
18 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: eaba5581
doi: 10.1126/sciadv.aba5581
|
19 |
Li Z, Zhang M, Li N, et al. Metal frame reinforced bulk metallic glass composites [J]. Mater. Res. Lett., 2020, 8: 60
doi: 10.1080/21663831.2019.1695684
|
20 |
Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
20 |
谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
21 |
San Marchi C, Kouzeli M, Rao R, et al. Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scr. Mater., 2003, 49: 861
doi: 10.1016/S1359-6462(03)00441-X
|
22 |
Shao C W, Zhao S, Wang X G, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique [J]. NPG Asia Mater., 2019, 11: 69
doi: 10.1038/s41427-019-0174-2
|
23 |
Ojima M, Inoue J, Nambu S, et al. Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction [J]. Scr. Mater., 2012, 66: 139
doi: 10.1016/j.scriptamat.2011.10.018
|
24 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
25 |
Lhuissier P, Inoue J, Koseki T. Strain field in a brittle/ductile multilayered steel composite [J]. Scr. Mater., 2011, 64: 970
doi: 10.1016/j.scriptamat.2011.01.048
|
26 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
27 |
He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
pmid: 12652670
|
28 |
Han B O, Lavernia E J, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall. Mater. Trans., 2005, 36A: 957
|
29 |
Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
|
30 |
Pawlowski A E, Cordero Z C, French M R, et al. Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms [J]. Mater. Des., 2017, 127: 346
doi: 10.1016/j.matdes.2017.04.072
|
31 |
Rahmani R, Antonov M, Brojan M. Lightweight 3D printed Ti6Al4V-AlSi10Mg hybrid composite for impact resistance and armor piercing shielding [J]. J. Mater. Res. Technol., 2020, 9: 13842
doi: 10.1016/j.jmrt.2020.09.108
|
32 |
Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance [J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105192
doi: 10.1016/j.ijrmhm.2020.105192
|
33 |
Han J C, Liu C, Jia Y, et al. Research progress on titanium/aluminum composite plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1270
|
33 |
韩建超, 刘 畅, 贾 燚 等. 钛/铝复合板研究进展 [J]. 中国有色金属学报, 2020, 30: 1270
|
34 |
Wang Z, Prashanth K G, Scudino S, et al. Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders [J]. Intermetallics, 2014, 46: 97
doi: 10.1016/j.intermet.2013.11.005
|
35 |
Zherebtsov S, Mazur A, Salishchev G, et al. Effect of hydrostatic extrusion at 600-700oC on the structure and properties of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2008, A485: 39
|
36 |
Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
36 |
刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
37 |
Yao W, Wu A P, Zou G S, et al. Formation process of the bonding joint in Ti/Al diffusion bonding [J]. Mater. Sci. Eng., 2008, A480: 456
|
38 |
Jiang B, Ren X P, Hou H L, et al. Analysis of peeling strength and bonding mechanism of Ti/Al foil interface using ultrasonic consolidation process [J]. Rare Met. Mater. Eng., 2019, 48: 3372
|
38 |
姜 波, 任学平, 侯红亮 等. 超声固结钛/铝箔材界面剥离强度与结合机理分析 [J]. 稀有金属材料与工程, 2019, 48: 3372
|
39 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
|
40 |
Chen W H, He W J, Chen Z J, et al. Effect of wavy profile on the fabrication and mechanical properties of Al/Ti/Al composites prepared by rolling bonding: Experiments and finite element simulations [J]. Adv. Eng. Mater., 2019, 21: 1900637
doi: 10.1002/adem.v21.11
|
41 |
Yu H L, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding [J]. J. Mater. Res., 2017, 32: 3761
doi: 10.1557/jmr.2017.355
|
42 |
Chen W H, He W J, Chen Z J, et al. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity [J]. Int. J. Plast., 2020, 133: 102806
doi: 10.1016/j.ijplas.2020.102806
|
43 |
Liu J, Wu Y Z, Wang L, et al. Fabrication and characterization of high-bonding-strength Al/Ti/Al-laminated composites via cryorolling [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 871
doi: 10.1007/s40195-020-01041-z
|
44 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
45 |
Jafari R, Eghbali B, Adhami M. Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites [J]. Mater. Chem. Phys., 2018, 213: 313
doi: 10.1016/j.matchemphys.2018.04.001
|
46 |
Du Y, Fan G H, Yu T B, et al. Laminated Ti-Al composites: Processing, structure and strength [J]. Mater. Sci. Eng., 2016, A673: 572
|
47 |
Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
|
48 |
Pei Y B, Huang T, Chen F X, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding [J]. Vacuum, 2020, 181: 109596
doi: 10.1016/j.vacuum.2020.109596
|
49 |
Ma M, Meng X, Liu W C. Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling [J]. J. Mater. Eng. Perform., 2017, 26: 3569
doi: 10.1007/s11665-017-2769-5
|
50 |
Liu Y, Liu C, Liu W S, et al. Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition [J]. Mater. Sci. Technol., 2018, 34: 945
doi: 10.1080/02670836.2017.1412042
|
51 |
Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
|
52 |
Kim D W, Lee D H, Kim J S, et al. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties [J]. Sci. Rep., 2017, 7: 8110
doi: 10.1038/s41598-017-08681-9
pmid: 28808267
|
53 |
Qin L, Fan M Y, Guo X Z, et al. Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing [J]. Vacuum, 2018, 155: 96
doi: 10.1016/j.vacuum.2018.05.021
|
54 |
Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461
pmid: 27917923
|
55 |
Lyu S, Sun Y B, Ren L, et al. Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites [J]. Intermetallics, 2017, 90: 16
doi: 10.1016/j.intermet.2017.06.007
|
56 |
Marr T, Freudenberger J, Seifert D, et al. Ti-Al composite wires with high specific strength [J]. Metals, 2011, 1: 79
doi: 10.3390/met1010079
|
57 |
Guo B S, Song M, Zhang X M, et al. Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle [J]. Mater. Charact., 2020, 170: 110666
doi: 10.1016/j.matchar.2020.110666
|
58 |
Liu Z W, Cheng N, Zheng Q L, et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates [J]. Mater. Sci. Eng., 2018, A710: 392
|
59 |
Ma Y, Mei Q S, Li C L, et al. Microstructure and mechanical behavior of Al-TiAl3 composites containing high content uniform dispersion of TiAl3 particles [J]. Mater. Sci. Eng., 2020, A786: 139435
|
60 |
Zeng Y, Himmler D, Randelzhofer P, et al. Microstructures and mechanical properties of Al3Ti/Al composites produced in situ by high shearing technology [J]. Adv. Eng. Mater., 2019, 21: 1800259
doi: 10.1002/adem.v21.4
|
61 |
Tamizi Junqani M, Madaah Hosseini H R, Azarniya A. Comprehensive structural and mechanical characterization of in-situ Al-Al3Ti nanocomposite modified by heat treatment [J]. Mater. Sci. Eng., 2020, A785: 139351
|
62 |
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
|
63 |
Yang X, Li Y Z, Duan M G, et al. An investigation of ductile fracture behavior of Ti6Al4V alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2022, 890: 161926
doi: 10.1016/j.jallcom.2021.161926
|
64 |
Wang X Q, Gong X B, Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing [J]. Procedia Manuf., 2015, 1: 287
|
65 |
Holovenko Y, Kollo L, Saarna M, et al. Effect of lattice surface treatment on performance of hardmetal-titanium interpenetrating phase composites [J]. Int. J. Refract. Met. Hard Mater., 2020, 86, 105087
doi: 10.1016/j.ijrmhm.2019.105087
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|