Please wait a minute...
金属学报  2026, Vol. 62 Issue (1): 159-172    DOI: 10.11900/0412.1961.2025.00197
  研究论文 本期目录 | 过刊浏览 |
超声冲击制备梯度纳米结构Zr-4合金低温扩散连接界面组织与力学性能
杨旭1, 杨振文1,2(), 王颖1, 李会军1, 李永兵2
1 天津大学 天津市现代连接技术重点实验室 天津 300350
2 上海交通大学 复杂薄板结构数字化制造重点实验室 上海 200240
Interfacial Microstructure and Mechanical Properties of Low-Temperature Diffusion-Bonded Zr-4 Alloy with Gradient Nanostructure via Ultrasonic Impact Treatment
YANG Xu1, YANG Zhenwen1,2(), WANG Ying1, LI Huijun1, LI Yongbing2
1 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300350, China
2 Shanghai Key Laboratory of Digital Manufacture for Thin-Walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

杨旭, 杨振文, 王颖, 李会军, 李永兵. 超声冲击制备梯度纳米结构Zr-4合金低温扩散连接界面组织与力学性能[J]. 金属学报, 2026, 62(1): 159-172.
Xu YANG, Zhenwen YANG, Ying WANG, Huijun LI, Yongbing LI. Interfacial Microstructure and Mechanical Properties of Low-Temperature Diffusion-Bonded Zr-4 Alloy with Gradient Nanostructure via Ultrasonic Impact Treatment[J]. Acta Metall Sin, 2026, 62(1): 159-172.

全文: PDF(5231 KB)   HTML
摘要: 

针对Zr-4合金高温扩散连接过程中晶粒粗化和界面第二相析出导致接头性能下降的问题,本工作采用超声冲击在Zr表面制备约70 μm厚的梯度纳米结构(GNS),以降低扩散连接温度并提升接头强度,并在740~800 ℃范围内开展扩散连接实验(保温时间30 min、压力10 MPa)。结果表明,梯度纳米结构由纳米晶、纳米层片及变形晶粒组成,富含高密度晶界、位错及孪晶。表面纳米晶可促进界面孔洞闭合,并有效抑制第二相的生长和聚集,使其在界面分布更均匀。同时,在连接过程中距接头界面15~100 μm的区域形成异常粗大晶粒,其最大尺寸可达基体晶粒的7.2倍。断裂行为分析表明,异常粗大晶粒并未成为裂纹源,反而通过诱导非均匀塑性变形和形成大量孪晶结构,促发额外的加工硬化效应,强化接头局部区域。GNS-Zr/GNS-Zr接头的剪切强度随着连接温度升高而增大,在800 ℃时最高达376.9 MPa,在相同连接条件下相较Zr/Zr接头提升1.2~1.6倍,且在低温下提升幅度更为显著。

关键词 锆合金扩散连接梯度纳米结构超声冲击处理    
Abstract

Zr alloys are widely used as cladding materials in light-water reactors because of their low neutron absorption and excellent corrosion resistance. However, achieving high-quality diffusion bonding of Zr alloys at conventional high temperatures is challenging, where grain coarsening and formation of interfacial secondary-phase particles (SPPs) degrade joint performance and may compromise the dimensional accuracy of precision components. This study develops a low-temperature, high-strength diffusion-bonding technique for Zr-4 alloy via surface nanocrystallization, and elucidates the associated microstructural evolution and strengthening mechanisms. A gradient nanostructure (GNS) with a thickness of approximately 70 μm was fabricated on the Zr-4 alloy surface via ultrasonic impact treatment (UIT). The GNS comprised nanograins, nanolamellae, and deformed grains, with high densities of grain boundaries, dislocations, and twins. This surface nanostructure was designed to enhance atomic diffusion, reduce bonding temperature, and improve joint properties. Diffusion-bonding experiments were performed for 30 min at temperatures ranging from 740 oC to 800 oC under a pressure of 10 MPa. The results revealed that the surface nanograins significantly accelerated interfacial void closure and suppressed SPPs overgrowth and aggregation, resulting in a more dispersed distribution of SPPs along the bonding interface. Abnormal grain growth appeared at 15-100 μm from the bonded interface, with the largest grains reaching up to 7.2 times the size of the matrix grains. This abnormal grain growth is attributed to the uneven distribution of strain energy within the GNS, which enables some grains with energy, orientation, or size advantages to grow preferentially by continuously consuming surrounding finer grains. Fracture behavior analysis revealed that cracks initiated neither at the bonded interface nor within the abnormally large grains, but in the Zr matrix region approximately 130 μm from the interface. These grains exhibited numerous deformation twins and acted as crack propagation barriers by coordinating deformation with the surrounding finer grains. Despite their lower yield strength, the abnormally large grains positively contributed to joint strength through a strengthening mechanism induced by hetero-deformation. The shear strength of the Zr/Zr and GNS-Zr/GNS-Zr joints improved as the bonding temperature increased. The GNS-Zr/GNS-Zr joint achieved the highest shear strength of 376.9 MPa at 800 oC. Under the same bonding conditions, GNS-Zr/GNS-Zr joints exhibited 1.2-1.6 times higher shear strength than the Zr/Zr joints, with greater improvements at lower temperatures.

Key wordsZr alloy    diffusion bonding    gradient nanostructure    ultrasonic impact treatment
收稿日期: 2025-07-08     
ZTFLH:  TG146  
基金资助:国家自然科学基金项目(52222511)
通讯作者: 杨振文,yangzw@tju.edu.cn,主要从事钎焊、扩散焊以及增材制造等方向的研究
作者简介: 杨 旭,男,1999年生,博士
图1  超声冲击处理工艺、扩散连接工艺及扩散连接工艺参数示意图
图2  Zr-4合金的EBSD分析
图3  超声冲击后Zr-4合金(GNS-Zr合金)纵截面梯度结构的EBSD分析
图4  GNS-Zr合金纵截面梯度结构的TEM分析
图5  Zr/Zr和GNS-Zr/GNS-Zr扩散连接接头显微组织的EBSD分析
图6  不同扩散连接温度下Zr/Zr接头和GNS-Zr/GNS-Zr接头界面的SEM像
PointZrFeCrSnPossible phase
196.301.170.721.81α-Zr
259.9927.4011.730.88Eutectic α-Zr + Zr(Fe, Cr)2
352.6035.1911.051.16Eutectic α-Zr + Zr(Fe, Cr)2
441.5931.8225.660.93Zr(Fe, Cr)2
表1  不同扩散连接温度下GNS-Zr/GNS-Zr接头的化学成分及相组成 (atomic fraction / %)
图7  不同扩散连接温度下接头界面结合率以及界面第二相颗粒的占比
图8  Zr/Zr和GNS-Zr/GNS-Zr扩散连接接头显微硬度分布及距离界面约5 μm处和异常粗大晶粒内部压痕的SEM像
图9  不同连接温度下Zr/Zr和GNS-Zr/GNS-Zr扩散连接接头的剪切强度
图10  780 ℃扩散连接温度下GNS-Zr/GNS-Zr接头断口截面的SEM像
图11  不同连接温度下GNS-Zr/GNS-Zr扩散连接接头断口形貌的SEM像
[1] Liu J K, Zhang X H, Hui D. A complete review and a prospect on the candidate materials for accident-tolerant fuel claddings [J]. Mater. Rep., 2018, 32: 1757
[1] 刘俊凯, 张新虎, 恽 迪. 事故容错燃料包壳候选材料的研究现状及展望 [J]. 材料导报, 2018, 32: 1757
[2] Wang X Q, Zhang J H, Guo H, et al. Phase-field simulations of phase transformation and crack evolution in zirconium alloy oxide film [J]. Acta Metall. Sin., 2025, 61: 1082
[2] 王小齐, 张金虎, 郭 辉 等. 锆合金氧化膜中相变与裂纹演化的相场模拟 [J]. 金属学报, 2025, 61: 1082
[3] Kautz E, Gwalani B, Yu Z F, et al. Investigating zirconium alloy corrosion with advanced experimental techniques: A review [J]. J. Nucl. Mater., 2023, 585: 154586
[4] Slobodyan M S. Arc welding of zirconium and its alloys: A review [J]. Prog. Nucl. Energy, 2021, 133: 103630
[5] Parga C J, van Rooyen I J, Coryell B D, et al. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet [J] J. Mater. Process. Technol., 2017, 241: 73
[6] Han Q, Kim D, Kim D, et al. Laser pulsed welding in thin sheets of zircaloy-4 [J]. J. Mater. Process. Technol., 2012, 212: 1116
[7] Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta Metall. Sin., 2022, 58: 141
[7] 化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58: 141
[8] Zhang M C, Xu Q S, Liu Y, et al. Effect of hot-pressing temperature on the microstructure and properties of the diffusion-bonded region of TC4 alloy [J]. Acta Metall. Sin., 2025, 61: 1183
[8] 张洺川, 徐勤思, 刘 意 等. 热压温度对TC4合金扩散连接区组织与性能的影响 [J]. 金属学报, 2025, 61: 1183
[9] Yang X, Guo C X, Wang R P, et al. Microstructural evolution and mechanical properties of Zr-4 alloy joints diffusion bonded with Nb interlayer [J]. Mater. Charact., 2024, 208: 113596
[10] Huang J S, Pei W, Xu S T, et al. Degradation mechanism on corrosion resistance of high Nb-containing zirconium alloys in oxygen-containing steam [J]. Acta Metall. Sin., 2024, 60: 509
[10] 黄建松, 裴 文, 徐诗彤 等. 高Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理 [J]. 金属学报, 2024, 60: 509
[11] Lin T, Li C, Zheng M S, et al. Role of nanostructured surface layers in enhancing pure titanium diffusion bonding above their destabilization temperatures [J]. Mater. Charact., 2024, 217: 114383
[12] Zhang Z Y, Li J, Liu K, et al. Diffusion bonding, brazing and resistance welding of zirconium alloys: A review [J]. J. Mater. Res. Technol., 2023, 26: 395
[13] Harte A, Griffiths M, Preuss M. The characterisation of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review [J]. J. Nucl. Mater., 2018, 505: 227
[14] Chen B, Gao C Y, Huang J, et al. Corrosion behavior of second phase alloys of β-(Nb, Zr) in deionized water at 360 oC [J]. Acta Metall. Sin., 2017, 53: 447
[14] 陈 兵, 高长源, 黄 娇 等. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为 [J]. 金属学报, 2017, 53: 447
[15] Lin T, Li C, Chen Y H, et al. Role of nanostructured Ni surface layer in enhanced Hastelloy alloy diffusion bonding at temperatures far beyond recrystallization [J]. Scr. Mater., 2024, 239: 115826
[16] Bai Y J, Li Y X, Wang Y, et al. Microstructure evolution of the Zr-4 alloy joints diffusion bonded with pure titanium interlayer and its influence on joint properties [J]. J. Mater. Process. Technol., 2024, 324: 118279
[17] Yuan R, Xie Y P, Li T, et al. An origin of corrosion resistance changes of Zr alloys: Effects of Sn and Nb on grain boundary strength of surface oxide [J]. Acta Mater., 2021, 209: 116804
[18] Gong W J, Liang S M, Zhang J Y, et al. Effect of cooling rate on hydride precipitation in zirconium alloys [J]. Acta Metall. Sin., 2024, 60: 1155
[18] 公维佳, 梁森茂, 张敬翊 等. 冷却速率对锆合金氢化物析出的影响 [J]. 金属学报, 2024, 60: 1155
[19] Li X F, Yin J, Zhang J, et al. Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review [J]. J. Mater. Sci. Technol., 2022, 122: 20
[20] Lin T, Li C, Si X Q, et al. An investigation on diffusion bonding of Cu/Cu using various grain size of Ni interlayers at low temperature [J]. Materialia, 2020, 14: 100882
[21] Gao H T, He G Q, Li Q, et al. Diffusion bonding of high entropy alloy and stainless steel at a relative lower temperature via surface nano-crystallization treatment [J]. J. Mater. Res. Technol., 2023, 24: 475
[22] Wang H L, Wang Z B, Lu K. Enhanced reactive diffusion of Zn in a nanostructured Fe produced by means of surface mechanical attrition treatment [J]. Acta Mater., 2012, 60: 1762
[23] Zhou X, Li X Y, Lu K. Enhanced thermal stability of nanograined metals below a critical grain size [J]. Science, 2018, 360: 526
[24] Yang Z W, Liu Q, Wang J H, et al. Effect of ultrasonic impact treatment on the microstructure and mechanical properties of diffusion-bonded TC11 alloy joints [J]. Arch. Civ. Mech. Eng., 2019, 19: 1431
[25] Peng Y Y, Li C, Guo Q Y, et al. Vacuum diffusion bonding between Ni3Al-based superalloy and S31042 steel by surface self-nanocrystallization treatment [J]. Mater. Charact., 2023, 202: 113031
[26] Sun L B, Huang L J, Huang R S, et al. Progress in the effect of ultrasonic impact treatment on microstructure improvement and strengthening mechanism in additive manufacturing [J]. Acta Metall. Sin., 2024, 60: 273
[26] 孙徕博, 黄陆军, 黄瑞生 等. 超声冲击对增材制造组织改善及强化机理影响的研究进展 [J]. 金属学报, 2024, 60: 273
[27] Lawrence A, Rickman J M, Harmer M P, et al. Parsing abnormal grain growth [J]. Acta Mater., 2016, 103: 681
[28] Wang Z M, Yang X, Wang J, et al. Microstructure and mechanical properties of vacuum diffusion bonded Zr-4 alloy joint [J]. Crystals, 2021, 11: 1437
[29] He B L, Xiong L, Jiang M M, et al. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment [J]. Int. J. Miner. Metall. Mater., 2017, 24: 410
[30] Kad B K, Gebert J M, Perez-Prado M T, et al. Ultrafine-grain-sized zirconium by dynamic deformation [J]. Acta Mater., 2006, 54: 4111
[31] Zaporozhets O I, Mordyuk B N, Dordienko N A, et al. Influence of surface ultrasonic impact treatment on texture evolution and elastic properties in the volume of Zr1Nb alloy [J]. Surf. Coat. Technol., 2020, 403: 126397
[32] Yamakov V, Wolf D, Phillpot S R, et al. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Mater., 2002, 50: 5005
[33] Yang X, Wang Y X, Yang Z W, et al. Enhancing diffusion bonding of Zr-4 alloy: The role of surface nanocrystallization in void closure and second phase particles suppression [J]. J. Alloys Compd., 2025, 1035: 181545
[34] Li L, Sun L X, Li M Q. Diffusion bonding of dissimilar titanium alloys via surface nanocrystallization treatment [J]. J. Mater. Res. Technol., 2022, 17: 1274
[35] Zhao W Q, Li C, Lin T, et al. Low-temperature diffusion bonding of Ti6Al4V alloy via nanocrystallization and hydrogenation surface treatment [J]. J. Mater. Res. Technol., 2023, 24: 7599
[36] Peng W, Li X, Gao J B, et al. Abnormal grain growth behavior in gradient nanostructured titanium investigated by coupled quasi-in-situ EBSD experiments and phase-field simulations [J]. Acta Mater., 2024, 276: 120141
[37] Yang Y, Tan L Z, Bei H B, et al. Thermodynamic modeling and experimental study of the Fe-Cr-Zr system [J]. J. Nucl. Mater., 2013, 441: 190
[38] Meng Z K, Meng Z C, Gao C Y, et al. Molecular dynamics simulation of creep mechanism in nanocrystalline α-zirconium under various conditions [J]. Acta Metall. Sin., 2024, 60: 699
[38] 孟子凯, 孟智超, 高长源 等. 不同条件下纳米晶α-Zr蠕变行为的分子动力学模拟 [J]. 金属学报, 2024, 60: 699
[39] Li B, Yang H L, Holmes R, et al. Microstructure evolution and mechanical property of high temperature solid-state diffusion bonded Cr-Zry4 with and without a 316 SS interlayer [J]. Nucl. Mater. Energy, 2022, 32: 101233
[40] Wang J X, Yao M Y, Lin Y C, et al. High temperature steam oxidation behavior of Zr-1Nb-xFe alloy under simulated LOCA condition [J]. Acta Metall. Sin., 2024, 60: 670
[40] 王金鑫, 姚美意, 林雨晨 等. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为 [J]. 金属学报, 2024, 60: 670
[41] Aldeen A W, Chen Z W, Disher I A, et al. Growth kinetics of second phase particles in N36 zirconium alloy: Zr-Sn-Nb-Fe [J]. J. Mater. Res. Technol., 2022, 17: 2038
[42] Xie B J, Yu Z X, Jiang H Y, et al. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding [J]. J. Mater. Sci. Technol., 2022, 96: 199
[43] Ling X, You G Q, Lu Z K, et al. Diffusion bonding mechanisms of pure Zr with a Ti interlayer: Microstructural characterization and polycrystalline molecular dynamics simulations [J]. J. Manuf. Process., 2024, 127: 397
[44] Liu L, Wang J, Gong S K, et al. Atomistic observation of a crack tip approaching coherent twin boundaries [J]. Sci. Rep., 2014, 4: 4397
[45] Lin X H, Han W Z. Achieving strength-ductility synergy in zirconium via ultra-dense twin-twin networks [J]. Acta Mater., 2024, 269: 119825
[46] Yin F X, Yuan L, Sun D Q, et al. Construction and strength-ductility mechanism of gradient metallic materials [J]. Chin. J. Nonferrous Met., 2025, 35: 1080
[46] 尹奉祥, 袁 亮, 孙德强 等. 梯度金属材料构筑及强-塑性机理 [J]. 中国有色金属学报, 2025, 35: 1080
[47] Zhang D H, Zhang H, Zhu J L, et al. High strength-ductility synergy of Inconel 625 alloy with a layered bimodal grain-structure [J]. Mater. Charact., 2024, 207: 113510
[1] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[2] 王小齐, 张金虎, 郭辉, 李学雄, 许海生, 柏春光, 徐东生, 杨锐. 锆合金氧化膜中相变与裂纹演化的相场模拟[J]. 金属学报, 2025, 61(7): 1082-1092.
[3] 俞强, 徐诗彤, 张佳楠, 姚美意, 胡丽娟, 谢耀平, 周邦新. Zr-0.75Sn-0.35Fe-0.15Cr-xNb合金在高温空气/蒸汽混合气氛中的氧化行为[J]. 金属学报, 2025, 61(11): 1689-1702.
[4] 公维佳, 梁森茂, 张敬翊, 李时磊, 孙勇, 李中奎, 李金山. 冷却速率对锆合金氢化物析出的影响[J]. 金属学报, 2024, 60(9): 1155-1164.
[5] 王金鑫, 姚美意, 林雨晨, 陈刘涛, 高长源, 徐诗彤, 胡丽娟, 谢耀平, 周邦新. Zr-1Nb-xFe合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2024, 60(5): 670-680.
[6] 黄建松, 裴文, 徐诗彤, 白勇, 姚美意, 胡丽娟, 谢耀平, 周邦新. Nb锆合金在含氧蒸汽中耐腐蚀性能恶化的机理[J]. 金属学报, 2024, 60(4): 509-521.
[7] 孙徕博, 黄陆军, 黄瑞生, 徐锴, 武鹏博, 龙伟民, 姜风春, 方乃文. 超声冲击对增材制造组织改善及强化机理影响的研究进展[J]. 金属学报, 2024, 60(3): 273-286.
[8] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[9] 化雨, 陈建国, 余黎明, 司永宏, 刘晨曦, 李会军, 刘永长. Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能[J]. 金属学报, 2022, 58(2): 141-154.
[10] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] 姚美意,张兴旺,侯可可,张金龙,胡鹏飞,彭剑超,周邦新. Zr-0.75Sn-0.35Fe-0.15Cr合金在250 ℃去离子水中的初期腐蚀行为[J]. 金属学报, 2020, 56(2): 221-230.
[12] 姚美意, 林雨晨, 侯可可, 梁雪, 胡鹏飞, 张金龙, 周邦新. Sn对锆合金在280 LiOH水溶液中初期腐蚀行为的影响[J]. 金属学报, 2019, 55(12): 1551-1560.
[13] 陈兵,高长源,黄娇,毛亚婧,姚美意,张金龙,周邦新,李强. β-(Nb, Zr)第二相合金在360 ℃去离子水中的腐蚀行为[J]. 金属学报, 2017, 53(4): 447-454.
[14] 任伊宾, 李俊, 王青川, 杨柯. MRI磁兼容合金研究[J]. 金属学报, 2017, 53(10): 1323-1330.
[15] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.